Department of Physics, University of California at Irvine , Irvine, California 92697, United States.
Department of Chemistry, University of California at Irvine , Irvine, California 92697, United States.
ACS Appl Mater Interfaces. 2017 Nov 15;9(45):39464-39474. doi: 10.1021/acsami.7b10908. Epub 2017 Nov 1.
Pd based alloy materials with hollow nanostructures are ideal hydrogen (H) sensor building blocks because of their double-H sensing active sites (interior and exterior side of hollow Pd alloy) and fast response. In this work, for the first time, we report a simple fabrication process for preparing hollow Pd-Ag alloy nanowires (Pd@Ag HNWs) by using the electrodeposition of lithographically patterned silver nanowires (NWs), followed by galvanic replacement reaction (GRR) to form palladium. By controlling the GRR time of aligned Ag NWs within an aqueous Pd-containing solution, the compositional transition and morphological evolution from Ag NWs to Pd@Ag HNWs simultaneously occurred, and the relative atomic ratio between Pd and Ag was controlled. Interestingly, a GRR duration of 17 h transformed Ag NWs into Pd@Ag HNWs that showed enhanced H response and faster sensing response time, reduced 2.5-fold, as compared with Ag NWs subjected to a shorter GRR period of 10 h. Furthermore, Pd@Ag HNWs patterned on the colorless and flexible polyimide (cPI) substrate showed highly reversible H sensing characteristics. To further demonstrate the potential use of Pd@Ag HNWs as sensing layers for all-transparent, wearable H sensing devices, we patterned the Au NWs perpendicular to Pd@Ag HNWs to form a heterogeneous grid-type metallic NW electrode which showed reversible H sensing properties in both bent and flat states.
具有中空纳米结构的 Pd 基合金材料是理想的氢(H)传感器构建块,因为它们具有双 H 传感活性位(中空 Pd 合金的内部和外部)和快速响应。在这项工作中,我们首次报道了一种通过光刻图案化的银纳米线(NWs)的电沉积,然后进行电置换反应(GRR)形成钯,来制备中空 Pd-Ag 合金纳米线(Pd@Ag HNWs)的简单制备工艺。通过控制在含 Pd 水溶液中排列的 Ag NWs 的 GRR 时间,同时发生了从 Ag NWs 到 Pd@Ag HNWs 的组成转变和形态演变,并且控制了 Pd 和 Ag 之间的相对原子比。有趣的是,将 Ag NWs 进行 17 小时的 GRR 可以将其转变为 Pd@Ag HNWs,与进行更短的 10 小时 GRR 周期的 Ag NWs 相比,其 H 响应增强,并且响应时间更快,降低了 2.5 倍。此外,在无色且柔韧的聚酰亚胺(cPI)衬底上图案化的 Pd@Ag HNWs 表现出高度可逆的 H 传感特性。为了进一步证明 Pd@Ag HNWs 作为全透明、可穿戴 H 传感器件的传感层的潜在用途,我们将 Au NWs 垂直于 Pd@Ag HNWs 图案化,形成异质网格型金属 NW 电极,该电极在弯曲和平面状态下均表现出可逆的 H 传感性能。