Hu Wei, Lin Lin, Yang Chao
Computational Research Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States.
Department of Mathematics, University of California , Berkeley, California 94720, United States.
J Chem Theory Comput. 2017 Nov 14;13(11):5458-5467. doi: 10.1021/acs.jctc.7b00892. Epub 2017 Oct 4.
The commutator direct inversion of the iterative subspace (commutator DIIS or C-DIIS) method developed by Pulay is an efficient and the most widely used scheme in quantum chemistry to accelerate the convergence of self-consistent field (SCF) iterations in Hartree-Fock theory and Kohn-Sham density functional theory. The C-DIIS method requires the explicit storage of the density matrix, the Fock matrix, and the commutator matrix. Hence, the method can only be used for systems with a relatively small basis set, such as the Gaussian basis set. We develop a new method that enables the C-DIIS method to be efficiently employed in electronic structure calculations with a large basis set such as planewaves for the first time. The key ingredient is the projection of both the density matrix and the commutator matrix to an auxiliary matrix called the gauge-fixing matrix. The resulting projected commutator-DIIS method (PC-DIIS) only operates on matrices of the same dimension as that consists of Kohn-Sham orbitals. The cost of the method is comparable to that of standard charge mixing schemes used in large basis set calculations. The PC-DIIS method is gauge-invariant, which guarantees that its performance is invariant with respect to any unitary transformation of the Kohn-Sham orbitals. We demonstrate that the PC-DIIS method can be viewed as an extension of an iterative eigensolver for nonlinear problems. We use the PC-DIIS method for accelerating Kohn-Sham density functional theory calculations with hybrid exchange-correlation functionals, and demonstrate its superior performance compared to the commonly used nested two-level SCF iteration procedure. Furthermore, we demonstrate that in the context of ab initio molecular dynamics (MD) simulation with hybrid functionals one can extrapolate the gauge-fixing matrix to achieve the goal of extrapolating the entire density matrix implicitly along the MD trajectory. Numerical results indicate that the new method significantly reduces the number of SCF iterations per MD step, compared to the commonly used strategy of extrapolating the electron density.
普利提出的迭代子空间的对易子直接反演(对易子DIIS或C-DIIS)方法,是量子化学中一种高效且应用最广泛的方案,用于加速哈特里-福克理论和科恩-沙姆密度泛函理论中自洽场(SCF)迭代的收敛。C-DIIS方法需要显式存储密度矩阵、福克矩阵和对易子矩阵。因此,该方法仅适用于具有相对较小基组的体系,如高斯基组。我们首次开发了一种新方法,使C-DIIS方法能够有效地应用于使用大基组(如平面波)的电子结构计算中。关键要素是将密度矩阵和对易子矩阵都投影到一个称为规范固定矩阵的辅助矩阵上。由此产生的投影对易子-DIIS方法(PC-DIIS)仅对与由科恩-沙姆轨道组成的矩阵具有相同维度的矩阵进行操作。该方法的成本与大基组计算中使用的标准电荷混合方案相当。PC-DIIS方法是规范不变的,这保证了其性能相对于科恩-沙姆轨道的任何酉变换都是不变的。我们证明PC-DIIS方法可以被视为非线性问题的迭代特征求解器的扩展。我们使用PC-DIIS方法加速具有混合交换关联泛函的科恩-沙姆密度泛函理论计算,并证明其与常用的嵌套两级SCF迭代过程相比具有优越的性能。此外,我们证明在使用混合泛函的从头算分子动力学(MD)模拟的背景下,可以外推规范固定矩阵,以实现沿MD轨迹隐式外推整个密度矩阵的目标。数值结果表明,与常用的外推电子密度的策略相比,新方法显著减少了每个MD步的SCF迭代次数。