Suppr超能文献

系统优化电池材料:锂离子电池中均匀、高能量、高稳定性的 LiNiMnCoO 正极材料的可扩展合成的关键参数优化。

Systematic Optimization of Battery Materials: Key Parameter Optimization for the Scalable Synthesis of Uniform, High-Energy, and High Stability LiNiMnCoO Cathode Material for Lithium-Ion Batteries.

机构信息

Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University , Ithaca, New York 14853-1301, United States.

Lionano, Inc. , 526 Campus Road, Weill Hall Suite 410, Ithaca, New York 14853, United States.

出版信息

ACS Appl Mater Interfaces. 2017 Oct 18;9(41):35811-35819. doi: 10.1021/acsami.7b10155. Epub 2017 Oct 6.

Abstract

Ni-rich LiNiMnCoO (x > 0.5) (NMC) materials have attracted a great deal of interest as promising cathode candidates for Li-ion batteries due to their low cost and high energy density. However, several issues, including sensitivity to moisture, difficulty in reproducibly preparing well-controlled morphology particles and, poor cyclability, have hindered their large scale deployment; especially for electric vehicle (EV) applications. In this work, we have developed a uniform, highly stable, high-energy density, Ni-rich LiNiMnCoO cathode material by systematically optimizing synthesis parameters, including pH, stirring rate, and calcination temperature. The particles exhibit a spherical morphology and uniform size distribution, with a well-defined structure and homogeneous transition-metal distribution, owing to the well-controlled synthesis parameters. The material exhibited superior electrochemical properties, when compared to a commercial sample, with an initial discharge capacity of 205 mAh/g at 0.1 C. It also exhibited a remarkable rate capability with discharge capacities of 157 mAh/g and 137 mAh/g at 10 and 20 C, respectively, as well as high tolerance to air and moisture. In order to demonstrate incorporation into a commercial scale EV, a large-scale 4.7 Ah LiNiMnCoO Al-full pouch cell with a high cathode loading of 21.6 mg/cm, paired with a graphite anode, was fabricated. It exhibited exceptional cyclability with a capacity retention of 96% after 500 cycles at room temperature. This material, which was obtained by a fully optimized scalable synthesis, delivered combined performance metrics that are among the best for NMC materials reported to date.

摘要

富镍层状 LiNiMnCoO(x > 0.5)(NMC)材料因其低成本和高能量密度而成为锂离子电池有前途的阴极候选材料,引起了极大的关注。然而,一些问题,包括对水分的敏感性、难以重复制备控制良好形态颗粒以及较差的循环性能,阻碍了它们的大规模应用;特别是对于电动汽车(EV)应用。在这项工作中,我们通过系统优化合成参数,包括 pH 值、搅拌速度和煅烧温度,开发了一种均匀、高稳定、高能量密度、富镍 LiNiMnCoO 阴极材料。由于控制良好的合成参数,颗粒呈现出球形形态和均匀的粒径分布,具有良好的结构和均匀的过渡金属分布。与商业样品相比,该材料表现出优异的电化学性能,在 0.1 C 时的初始放电容量为 205 mAh/g。它还表现出出色的倍率性能,在 10 和 20 C 时的放电容量分别为 157 mAh/g 和 137 mAh/g,并且对空气和水分具有高耐受性。为了证明将其纳入商业规模的电动汽车中,制造了一个具有高阴极负载(21.6 mg/cm)的大型 4.7 Ah LiNiMnCoO Al 全袋电池,与石墨阳极配对。它在室温下经过 500 次循环后具有出色的循环性能,容量保持率为 96%。这种通过完全优化的可扩展合成获得的材料,提供了迄今为止报道的 NMC 材料中综合性能指标最好的材料之一。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验