Suppr超能文献

口腔鳞状细胞癌中 lncRNAs-miRNAs-mRNAs 的复杂综合分析。

Complex integrated analysis of lncRNAs-miRNAs-mRNAs in oral squamous cell carcinoma.

机构信息

Department of Cariology, Endodontology and Periodontology, University Leipzig, Liebigstr. 12, 04103 Leipzig, Germany.

College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China.

出版信息

Oral Oncol. 2017 Oct;73:1-9. doi: 10.1016/j.oraloncology.2017.07.026. Epub 2017 Jul 31.

Abstract

OBJECTIVES

This study aims to reveal regulatory network of lncRNAs-miRNAs-mRNAs in oral squamous cell carcinoma (OSCC) through gene expression data.

MATERIAL AND METHODS

Differentially expressed lncRNAs, miRNAs and mRNAs (cut-off: False discovery rate (FDR)<0.05 and |fold change|>1.5) were unveiled by package edgeR of R. Cox regression analysis was performed to screen prognostic factors in OSCC related with overall survival (OS) and relapse-free survival (RFS). Protein-protein interaction (PPI) network was constructed for differentially expressed mRNAs using BioGRID, HPRD and DIP. Key hub genes were identified from top 100 differentially expressed mRNAs ranked by betweenness centrality using recursive feature elimination. LncRNA-miRNA and miRNA-mRNA regulatory network were constructed and combined into ceRNAs regulatory network. Gene ontology biological terms and Kyoto Encyclopedia of Genes and Genomes pathways were identified using Fisher's exact test.

RESULTS

A total of 929 differentially expressed mRNAs, 23 differentially expressed lncRNAs and 29 differentially expressed miRNAs were identified. 59 mRNAs, 6 miRNAs (hsa-mir-133a-1, hsa-mir-1-2, hsa-mir-486, hsa-mir-135b, hsa-mir-196b, hsa-mir-193b) and 6 lncRNAs (C10orf91, C2orf48, SFTA1P, FLJ41941,PART1,TTTY14) were related with OS; and 52 mRNAs, 4 miRNAs (hsa-mir-133a-1, hsa-mir-135b, hsa-mir-196b, hsa-mir-193b) and 2 lncRNAs (PART1, TTTY14) were associated with RFS. A support vector machine (SVM) classifier containing 37 key hub genes was obtained. A ceRNA regulatory network containing 417 nodes and 696 edges was constructed. ECM-receptor interaction, cytokine-cytokine receptor interaction, focal adhesion, arachidonic acid metabolism, and p53 signaling pathway were significantly enriched in the network.

CONCLUSION

These findings uncover the pathogenesis of OSCC and might provide potential therapeutic targets.

摘要

目的

本研究旨在通过基因表达数据揭示口腔鳞状细胞癌(OSCC)中 lncRNA-miRNA-mRNA 的调控网络。

材料与方法

使用 R 软件的 edgeR 包筛选差异表达的 lncRNA、miRNA 和 mRNA(截止值:错误发现率(FDR)<0.05 且 |fold change|>1.5)。使用 Cox 回归分析筛选与总生存期(OS)和无复发生存期(RFS)相关的 OSCC 预后因素。使用 BioGRID、HPRD 和 DIP 构建差异表达 mRNA 的蛋白质-蛋白质相互作用(PPI)网络。使用递归特征消除从按介数中心性排名前 100 的差异表达 mRNA 中识别关键枢纽基因。构建 lncRNA-miRNA 和 miRNA-mRNA 调控网络,并将其组合成 ceRNA 调控网络。使用 Fisher 精确检验鉴定基因本体生物学术语和京都基因与基因组百科全书通路。

结果

共鉴定出 929 个差异表达的 mRNAs、23 个差异表达的 lncRNAs 和 29 个差异表达的 miRNAs。有 59 个 mRNAs、6 个 miRNAs(hsa-mir-133a-1、hsa-mir-1-2、hsa-mir-486、hsa-mir-135b、hsa-mir-196b、hsa-mir-193b)和 6 个 lncRNAs(C10orf91、C2orf48、SFTA1P、FLJ41941、PART1、TTTY14)与 OS 相关;有 52 个 mRNAs、4 个 miRNAs(hsa-mir-133a-1、hsa-mir-135b、hsa-mir-196b、hsa-mir-193b)和 2 个 lncRNAs(PART1、TTTY14)与 RFS 相关。获得了一个包含 37 个关键枢纽基因的支持向量机(SVM)分类器。构建了一个包含 417 个节点和 696 个边的 ceRNA 调控网络。该网络显著富集了 ECM-受体相互作用、细胞因子-细胞因子受体相互作用、黏附斑、花生四烯酸代谢和 p53 信号通路。

结论

这些发现揭示了 OSCC 的发病机制,并可能为潜在的治疗靶点提供了依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验