Suppr超能文献

浮游植物在光和生物量梯度上的净能量通量的大小缩放。

Phytoplankton size-scaling of net-energy flux across light and biomass gradients.

机构信息

Centre of Geometric Biology, School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia.

出版信息

Ecology. 2017 Dec;98(12):3106-3115. doi: 10.1002/ecy.2032. Epub 2017 Nov 14.

Abstract

Many studies examine how body size mediates energy use, but few investigate how size simultaneously regulates energy acquisition. Furthermore, rarely energy fluxes are examined while accounting for the role of biotic and abiotic factors in which they are nested. These limitations contribute to an incomplete understanding of how size affects the transfer of energy through individuals, populations, and communities. Here we characterized photosynthesis-irradiance (P-I) curves and per-cell net-energy use for 21 phytoplankton species spanning across four orders of magnitude of size and seven phyla, each measured across six light intensities and four population densities. We then used phylogenetic mixed models to quantify how body size influences the energy turnover rates of a species, and how this changes across environments. Rate-parameters for the P-I curve and net-energy budgets were mostly highly correlated and consistent with an allometric size-scaling exponent of <1. The energy flux of a cell decreased with population density and increased with light intensity, but the effect of body size remained constant across all combinations of treatment levels (i.e. no size×populationdensity interaction). The negative effect of population density on photosynthesis and respiration is mostly consistent with an active downregulation of metabolic rates following a decrease in per-cell resource availability, possibly as an adaptive strategy to reduce the minimum requirements of a cell and improve its competitive ability. Also, because an increase in body size corresponds to a less-than-proportional increase in net-energy (i.e. exponent<1), we propose that volume-specific net-energy flux can represent an important cost of evolving larger body sizes in autotrophic single-cell organisms.

摘要

许多研究都考察了体型如何调节能量消耗,但很少有研究调查体型如何同时调节能量获取。此外,很少有研究在考虑到它们嵌套的生物和非生物因素的作用的情况下,检查能量通量。这些局限性导致我们对体型如何影响个体、种群和群落中能量传递的理解不完整。在这里,我们描述了跨越四个体型大小数量级和七个门的 21 种浮游植物物种的光合作用-辐照度(P-I)曲线和每细胞净能量利用,每个物种都在六个光照强度和四个种群密度下进行测量。然后,我们使用系统发育混合模型来量化体型如何影响物种的能量周转率,以及这种变化如何随环境而变化。P-I 曲线和净能量预算的速率参数大多高度相关,并且与<1 的异速体型标度指数一致。细胞的能量通量随种群密度的增加而降低,随光照强度的增加而增加,但体型的影响在所有处理水平的组合中保持不变(即没有体型×种群密度相互作用)。种群密度对光合作用和呼吸作用的负面影响与代谢率的主动下调基本一致,这可能是一种适应策略,以减少细胞的最低要求并提高其竞争力。此外,由于体型的增加与净能量的不成比例增加相对应(即指数<1),我们提出体积特异性净能量通量可以代表在自养单细胞生物中进化更大体型的重要成本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验