Suppr超能文献

用于制备高效染料敏化和钙钛矿太阳能电池的TiO浆料的超快火焰退火

Ultrafast Flame Annealing of TiO Paste for Fabricating Dye-Sensitized and Perovskite Solar Cells with Enhanced Efficiency.

作者信息

Kim Jung Kyu, Chai Sung Uk, Cho Yoonjun, Cai Lili, Kim Sung June, Park Sangwook, Park Jong Hyeok, Zheng Xiaolin

机构信息

Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.

Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea.

出版信息

Small. 2017 Nov;13(42). doi: 10.1002/smll.201702260. Epub 2017 Sep 20.

Abstract

Mesoporous TiO nanoparticle (NP) films are broadly used as electrodes in photoelectrochemical cells, dye-sensitized solar cells (DSSCs), and perovskite solar cells (PSCs). State-of-the-art mesoporous TiO NP films for these solar cells are fabricated by annealing TiO paste-coated fluorine-doped tin oxide glass in a box furnace at 500 °C for ≈30 min. Here, the use of a nontraditional reactor, i.e., flame, is reported for the high throughput and ultrafast annealing of TiO paste (≈1 min). This flame-annealing method, compared to conventional furnace annealing, exhibits three distinct benefits. First, flame removes polymeric binders in the initial TiO paste more completely because of its high temperature (≈1000 °C). Second, flame induces strong interconnections between TiO nanoparticles without affecting the underlying transparent conducting oxide substrate. Third, the flame-induced carbothermic reduction on the TiO surface facilitates charge injection from the dye/perovskite to TiO . Consequently, when the flame-annealed mesoporous TiO film is used to fabricate DSSCs and PSCs, both exhibit enhanced charge transport and higher power conversion efficiencies than those fabricated using furnace-annealed TiO films. Finally, when the ultrafast flame-annealing method is combined with a fast dye-coating method to fabricate DSSC devices, its total fabrication time is reduced from over 3 h to ≈10 min.

摘要

介孔二氧化钛纳米颗粒(NP)薄膜被广泛用作光电化学电池、染料敏化太阳能电池(DSSC)和钙钛矿太阳能电池(PSC)的电极。用于这些太阳能电池的最先进的介孔二氧化钛NP薄膜是通过在箱式炉中于500℃对涂覆有二氧化钛浆料的氟掺杂氧化锡玻璃进行退火约30分钟来制备的。在此,报道了使用一种非传统反应器,即火焰,对二氧化钛浆料进行高通量和超快退火(约1分钟)。与传统的炉式退火相比,这种火焰退火方法具有三个明显的优点。首先,由于火焰温度高(约1000℃),它能更彻底地去除初始二氧化钛浆料中的聚合物粘合剂。其次,火焰能在不影响底层透明导电氧化物基板的情况下,诱导二氧化钛纳米颗粒之间形成强连接。第三,火焰在二氧化钛表面诱导的碳热还原促进了电荷从染料/钙钛矿向二氧化钛的注入。因此,当使用火焰退火的介孔二氧化钛薄膜来制造DSSC和PSC时,两者都表现出比使用炉式退火的二氧化钛薄膜制造的器件更高的电荷传输和功率转换效率。最后,当超快火焰退火方法与快速染料涂覆方法相结合来制造DSSC器件时,其总制造时间从超过3小时减少到约1分钟。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验