Lawrence Emily L, Peppoloni Lorenzo, Valero-Cuevas Francisco J
Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
PERCRO Laboratory, TeCIP Institute, Scuola Superiore Sant'Anna, via Alamanni 13b, 56010 Ghezzano, San Giuliano Terme, Pisa, Italy.
J Biomech. 2017 Oct 3;63:1-7. doi: 10.1016/j.jbiomech.2017.09.013. Epub 2017 Sep 14.
We studied whether the time-varying forces that control unstable foot-ground interactions provide insight into the neural control of dynamic leg function. Twenty elite (10F, 26.4±3.5yrs) and 20 recreational (10F, 24.8±2.4yrs) athletes used an isolated leg to maximally compress a slender spring designed to buckle at low forces while seated. The foot forces during the compression at the edge of instability quantify the maximal sensorimotor ability to control dynamic foot-ground interactions. Using the nonlinear analysis technique of attractor reconstruction, we characterized the spatial (interquartile range IQR) and geometric (trajectory length TL, volume V, and sum of edge lengths SE) features of the dynamical behavior of those force time series. ANOVA confirmed the already published effect of sex, and a new effect of athletic ability, respectively, in TL (p=0.014 and p<0.001), IQR (p=0.008 and p<0.001), V (p=0.034 and p=0.002), and SE (p=0.033 and p<0.001). Further analysis revealed that, for recreational athletes, females exhibited weaker corrective actions and greater stochasticity than males as per their greater mean values of TL (p=0.003), IQR (p=0.018), V (p=0.017), and SE (p=0.025). Importantly, sex differences disappeared in elite athletes. These results provide an empirical link between sex, athletic ability, and nonlinear dynamical control. This is a first step in understanding the sensorimotor mechanisms for control of unstable foot-ground interactions. Given that females suffer a greater incidence of non-contact knee ligament injuries, these non-invasive and practical metrics of leg dexterity may be both indicators of athletic ability, and predictors of risk of injury.
我们研究了控制不稳定足部与地面相互作用的时变力是否能为动态腿部功能的神经控制提供见解。20名精英运动员(10名女性,年龄26.4±3.5岁)和20名业余运动员(10名女性,年龄24.8±2.4岁)坐着时用单腿最大限度地压缩一个细长弹簧,该弹簧设计为在低力作用下会弯曲。在接近不稳定边缘时的压缩过程中的足部力量化了控制动态足部与地面相互作用的最大感觉运动能力。使用吸引子重建的非线性分析技术,我们表征了这些力时间序列动态行为的空间特征(四分位间距IQR)和几何特征(轨迹长度TL、体积V和边长总和SE)。方差分析分别证实了已发表的性别效应以及运动能力的新效应,在TL方面(p = 0.014和p < 0.001)、IQR方面(p = 0.008和p < 0.001)、V方面(p = 0.034和p = 0.002)以及SE方面(p = 0.033和p < 0.001)。进一步分析表明,对于业余运动员,女性表现出比男性更弱的纠正动作和更大的随机性,因为她们在TL(p = 0.003)、IQR(p = 0.018)、V(p = 0.017)和SE(p = 0.025)方面的平均值更高。重要的是,精英运动员中的性别差异消失了。这些结果为性别、运动能力和非线性动态控制之间提供了实证联系。这是理解控制不稳定足部与地面相互作用的感觉运动机制的第一步。鉴于女性非接触性膝关节韧带损伤的发生率更高,这些非侵入性且实用的腿部灵活性指标可能既是运动能力的指标,也是受伤风险的预测指标。