Masoud Nazila, Delannoy Laurent, Schaink Herrick, van der Eerden Ad, de Rijk Jan Willem, Silva Tiago A G, Banerjee Dipanjan, Meeldijk Johannes D, de Jong Krijn P, Louis Catherine, de Jongh Petra E
Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands.
Laboratoire de Réactivité de Surface, Sorbonne Universités, UPMC Univ Paris 06, UMR CNRS 7197, 4 Place Jussieu, Case 178, F-75252 Paris, France.
ACS Catal. 2017 Sep 1;7(9):5594-5603. doi: 10.1021/acscatal.7b01424. Epub 2017 Jul 14.
Supported gold nanoparticles are highly selective catalysts for a range of both liquid-phase and gas-phase hydrogenation reactions. However, little is known about their stability during gas-phase catalysis and the influence of the support thereon. We report on the activity, selectivity, and stability of 2-4 nm Au nanoparticulate catalysts, supported on either TiO or SiO, for the hydrogenation of 0.3% butadiene in the presence of 30% propene. Direct comparison of the stability of the Au catalysts was possible as they were prepared via the same method but on different supports. At full conversion of butadiene, only 0.1% of the propene was converted for both supported catalysts, demonstrating their high selectivity. The TiO-supported catalysts showed a steady loss of activity, which was recovered by heating in air. We demonstrated that the deactivation was not caused by significant metal particle growth or strong metal-support interaction, but rather, it is related to the deposition of carbonaceous species under reaction conditions. In contrast, all the SiO-supported catalysts were highly stable, with very limited formation of carbonaceous deposits. It shows that SiO-supported catalysts, despite their 2-3 times lower initial activities, clearly outperform TiO-supported catalysts within a day of run time.
负载型金纳米颗粒是一系列液相和气相氢化反应的高选择性催化剂。然而,关于它们在气相催化过程中的稳定性以及载体对其的影响却知之甚少。我们报道了负载在TiO或SiO上的2 - 4纳米金纳米颗粒催化剂在30%丙烯存在下对0.3%丁二烯氢化反应的活性、选择性和稳定性。由于金催化剂是通过相同方法制备但负载在不同载体上的,因此可以直接比较它们的稳定性。在丁二烯完全转化时,两种负载型催化剂中只有0.1%的丙烯被转化,这表明它们具有高选择性。负载在TiO上的催化剂活性稳步下降,通过在空气中加热可以恢复。我们证明失活不是由显著的金属颗粒生长或强金属 - 载体相互作用引起的,而是与反应条件下碳质物种的沉积有关。相比之下,所有负载在SiO上的催化剂都高度稳定,碳质沉积物的形成非常有限。结果表明,负载在SiO上的催化剂尽管初始活性低2 - 3倍,但在运行一天内明显优于负载在TiO上的催化剂。