Suppr超能文献

呼气 LTB、LXA、FeNO 和 FEV 的组合作为“哮喘分类比”可用于表征儿童哮喘。

A composite of exhaled LTB , LXA , FeNO, and FEV as an "asthma classification ratio" characterizes childhood asthma.

机构信息

Division of Allergy, Asthma and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan.

Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan.

出版信息

Allergy. 2018 Mar;73(3):627-634. doi: 10.1111/all.13318. Epub 2017 Nov 27.

Abstract

BACKGROUND

Aberrant generation of eicosanoids is associated with asthma, but the evidence remains incomplete and its potential utility as biomarkers is unclear. Major eicosanoids in exhaled breath condensates (EBCs) were assessed as candidate markers for childhood asthma.

METHODS

Ten exhaled eicosanoid species was evaluated using ELISA in the discovery phase, followed by prediction model-building and validation phases.

RESULTS

Exhaled LTB , LTE , PGE and LXA showed significant difference between asthmatics (N = 60) and controls (N = 20). For validation, an expanded study population consisting of 626 subjects with asthma and 161 healthy controls was partitioned into a training subset to establish a prediction model and a test sample subset for validation. Receiver operating characteristic (ROC) analyses of the training subset revealed the level of exhaled LTB to be the most discriminative among all parameters, including FeNO, and a composite of exhaled LTB , LXA , together with FeNO and FEV , distinguishing asthma with high sensitivity and specificity. Further, the Youden index (J) indicated the cut point value of 0.598 for this composite of markers as having the strongest discriminatory ability (sensitivity = 85.2% and specificity = 83.6%). The predictive algorithm as "asthma classification ratio" was further validated in an independent test sample with sensitivity and specificity being 84.4% and 84.8%, respectively.

CONCLUSIONS

In a pediatric study population in Taiwan, the levels of exhaled LTB , LTE , LXA and PGE in asthmatic children were significantly different from those of healthy controls, and the combination of exhaled LTB and LXA , together with FeNO and FEV , best characterized childhood asthma.

摘要

背景

二十烷类物质的异常生成与哮喘有关,但证据仍不完整,其作为生物标志物的潜在效用尚不清楚。本研究评估呼出气冷凝物(EBC)中的主要二十烷类物质作为儿童哮喘的候选生物标志物。

方法

在发现阶段使用 ELISA 评估了 10 种呼出气二十烷类物质,然后进行预测模型构建和验证阶段。

结果

哮喘组(N=60)和对照组(N=20)之间呼出气 LTB 、LTE 、PGE 和 LXA 存在显著差异。在验证阶段,将由 626 例哮喘患者和 161 例健康对照组成的扩展研究人群分为训练子集以建立预测模型和测试样本子集进行验证。训练子集的受试者工作特征(ROC)分析显示,呼出气 LTB 水平在包括 FeNO 在内的所有参数中最具区分性,呼出气 LTB 、LXA 与 FeNO 和 FEV 的组合可区分哮喘,具有较高的敏感性和特异性。此外,Youden 指数(J)表明,该标志物组合的截断值为 0.598 时,具有最强的区分能力(敏感性为 85.2%,特异性为 83.6%)。该作为“哮喘分类比”的预测算法在独立测试样本中进一步得到验证,敏感性和特异性分别为 84.4%和 84.8%。

结论

在台湾的儿童研究人群中,哮喘儿童呼出气 LTB 、LTE 、LXA 和 PGE 的水平与健康对照组明显不同,呼出气 LTB 和 LXA 与 FeNO 和 FEV 的组合能更好地描述儿童哮喘。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验