Suppr超能文献

板孔内微波辅助蛋白消解用于简便取样和快速消解。

Microwave-Assisted Protein Digestion in a Plate Well for Facile Sampling and Rapid Digestion.

机构信息

Department of Chemical and Biological Engineering, Korea University , Seoul 02841, Republic of Korea.

Department of Chemistry, Chungnam National University , Daejeon 34134, Republic of Korea.

出版信息

Anal Chem. 2017 Oct 17;89(20):10655-10660. doi: 10.1021/acs.analchem.7b02169. Epub 2017 Sep 25.

Abstract

Protein digestion is one of the most important processes in proteomic analysis. Here, we report microwave-assisted protein digestion in a plate well, which allows for facile sampling as well as rapid protein digestion based on the combination of highly stable enzyme immobilization and 3D printing technologies. Trypsin (TR) was immobilized on polystyrene-based nanofibers via an enzyme coating (EC) approach. The EC with stabilized TR activity was assembled with the 3D-printed structure in the plate well (EC/3D), which provides two separated compartments for the solution sampling and the TR-catalyzed protein digestion, respectively. EC/3D can effectively prevent the interference of sampling by accommodating EC in the separated compartment from the sampling hole in the middle. EC/3D in the plate well maintained its protein digestion performance under shaking over 160 days. Microwave irradiation enabled the digestion of bovine serum albumin within 10 min, generating the MALDI-TOF MS results of 75.0% sequence coverage and 61 identified peptides. EC/3D maintained its protein digestion performance under microwave irradiation after 30 times of recycled uses. EC/3D in the plate well has demonstrated its potential as a robust and facile tool for the development of an automated protein digestion platform. The combination of stable immobilized enzymes and 3D-printed structures can be potentially utilized not only for the protein digestion, but also for many other enzyme applications, including bioconversion and biosensors.

摘要

蛋白质消化是蛋白质组学分析中最重要的过程之一。在这里,我们报告了在板孔中进行的微波辅助蛋白质消化,该方法结合了高度稳定的酶固定化和 3D 打印技术,允许方便地采样以及快速蛋白质消化。通过酶包被(EC)方法将胰蛋白酶(TR)固定在基于聚苯乙烯的纳米纤维上。具有稳定 TR 活性的 EC 与 3D 打印结构在板孔中组装(EC/3D),该结构分别为溶液采样和 TR 催化的蛋白质消化提供了两个分离的隔室。EC/3D 可以通过将 EC 容纳在分离的隔室中,防止从中间的采样孔干扰采样。在超过 160 天的时间里,EC/3D 在孔板中保持了其蛋白质消化性能,在摇动条件下。微波辐射使牛血清白蛋白在 10 分钟内消化,产生 MALDI-TOF MS 结果为 75.0%序列覆盖率和 61 个鉴定肽段。EC/3D 在 30 次回收使用后仍能保持其在微波辐射下的蛋白质消化性能。板孔中的 EC/3D 已经证明了它作为一种强大且简便的工具,用于开发自动化蛋白质消化平台的潜力。稳定的固定化酶和 3D 打印结构的组合不仅可以用于蛋白质消化,还可以用于许多其他酶应用,包括生物转化和生物传感器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验