ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University , Canberra, Australian Capital Territory 2601, Australia.
Department of Chemistry, Curtin University , Bentley, Western Australia 6102, Australia.
J Am Chem Soc. 2017 Oct 18;139(41):14699-14706. doi: 10.1021/jacs.7b08239. Epub 2017 Oct 6.
A central idea in electron-transfer theories is the coupling of the electronic state of a molecule to its structure. Here we show experimentally that fine changes to molecular structures by mechanically stretching a single metal complex molecule via changing the metal-ligand bond length can shift its electronic energy levels and predictably guide electron-transfer reactions, leading to the changes in redox state. We monitor the redox state of the molecule by tracking its characteristic conductance, determine the shift in the redox potential due to mechanical stretching of the metal-ligand bond, and perform model calculations to provide insights into the observations. The work reveals that a mechanical force can shift the redox potential of a molecule, change its redox state, and thus allow the manipulation of single molecule conductance.
电子转移理论的一个核心思想是分子的电子状态与其结构的耦合。在这里,我们通过改变金属-配体键长来实验证明,通过机械拉伸单个金属配合物分子对分子结构的细微改变可以改变其电子能级,并可预测性地引导电子转移反应,从而改变氧化还原状态。我们通过跟踪分子的特征电导来监测分子的氧化还原状态,确定由于金属-配体键的机械拉伸而导致的氧化还原电势的位移,并进行模型计算以深入了解观察结果。这项工作表明,机械力可以改变分子的氧化还原电势,改变其氧化还原状态,从而允许对单个分子电导进行操控。