Suppr超能文献

使用盲可逆信息隐藏技术保护在线数字生理信号的隐私性。

Preserving privacy of online digital physiological signals using blind and reversible steganography.

作者信息

Shiu Hung-Jr, Lin Bor-Sing, Huang Chien-Hung, Chiang Pei-Ying, Chiang Pei-Ying, Lei Chin-Laung

机构信息

DCNS Lab, Graduate Institute of Electrical Engineering, National Taiwan University, Taipei City 10617, Taiwan, ROC.

Department of Computer Science and Information Engineering, National Taipei University, Taipei County 23741, Taiwan, ROC.

出版信息

Comput Methods Programs Biomed. 2017 Nov;151:159-170. doi: 10.1016/j.cmpb.2017.08.015. Epub 2017 Aug 26.

Abstract

BACKGROUND AND OBJECTIVE

Physiological signals such as electrocardiograms (ECG) and electromyograms (EMG) are widely used to diagnose diseases. Presently, the Internet offers numerous cloud storage services which enable digital physiological signals to be uploaded for convenient access and use. Numerous online databases of medical signals have been built. The data in them must be processed in a manner that preserves patients' confidentiality.

METHODS

A reversible error-correcting-coding strategy will be adopted to transform digital physiological signals into a new bit-stream that uses a matrix in which is embedded the Hamming code to pass secret messages or private information. The shared keys are the matrix and the version of the Hamming code.

RESULTS

An online open database, the MIT-BIH arrhythmia database, was used to test the proposed algorithms. The time-complexity, capacity and robustness are evaluated. Comparisons of several evaluations subject to related work are also proposed.

CONCLUSIONS

This work proposes a reversible, low-payload steganographic scheme for preserving the privacy of physiological signals. An (n,  m)-hamming code is used to insert (n - m) secret bits into n bits of a cover signal. The number of embedded bits per modification is higher than in comparable methods, and the computational power is efficient and the scheme is secure. Unlike other Hamming-code based schemes, the proposed scheme is both reversible and blind.

摘要

背景与目的

心电图(ECG)和肌电图(EMG)等生理信号被广泛用于疾病诊断。目前,互联网提供了众多云存储服务,可上传数字生理信号以便于访问和使用。已建立了许多医学信号在线数据库。其中的数据必须以保护患者隐私的方式进行处理。

方法

将采用一种可逆纠错编码策略,把数字生理信号转换为一个新的比特流,该比特流使用嵌入汉明码的矩阵来传递秘密消息或私密信息。共享密钥是矩阵和汉明码的版本。

结果

使用一个在线开放数据库——麻省理工学院 - 贝斯以色列女执事医疗中心心律失常数据库(MIT - BIH arrhythmia database)来测试所提出的算法。评估了时间复杂度、容量和鲁棒性。还提出了与相关工作相比的几种评估结果。

结论

这项工作提出了一种用于保护生理信号隐私的可逆、低负载隐写方案。使用(n, m)汉明码将(n - m)个秘密比特插入到掩护信号的n个比特中。每次修改时嵌入的比特数高于可比方法,计算能力高效且该方案安全。与其他基于汉明码的方案不同,所提出的方案既是可逆的又是盲的。

相似文献

1
Preserving privacy of online digital physiological signals using blind and reversible steganography.
Comput Methods Programs Biomed. 2017 Nov;151:159-170. doi: 10.1016/j.cmpb.2017.08.015. Epub 2017 Aug 26.
2
QR code based patient data protection in ECG steganography.
Australas Phys Eng Sci Med. 2018 Dec;41(4):1057-1068. doi: 10.1007/s13246-018-0695-y. Epub 2018 Nov 5.
3
Quality optimized medical image information hiding algorithm that employs edge detection and data coding.
Comput Methods Programs Biomed. 2016 Apr;127:24-43. doi: 10.1016/j.cmpb.2016.01.011. Epub 2016 Jan 29.
4
Steganography-based access control to medical data hidden in electrocardiogram.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:1302-5. doi: 10.1109/EMBC.2013.6609747.
5
Effective Electrocardiogram Steganography Based on Coefficient Alignment.
J Med Syst. 2016 Mar;40(3):66. doi: 10.1007/s10916-015-0426-9. Epub 2015 Dec 29.
6
A morphologically robust chaotic map based approach to embed patient's confidential data securely in non-QRS regions of ECG signal.
Australas Phys Eng Sci Med. 2019 Mar;42(1):111-135. doi: 10.1007/s13246-018-00718-1. Epub 2019 Jan 7.
8
Efficient Privacy-Preserving Access Control Scheme in Electronic Health Records System.
Sensors (Basel). 2018 Oct 18;18(10):3520. doi: 10.3390/s18103520.
9
Steganography in arrhythmic electrocardiogram signal.
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:1409-12. doi: 10.1109/EMBC.2015.7318633.
10
A Double Chaotic Layer Encryption Algorithm for Clinical Signals in Telemedicine.
J Med Syst. 2017 Apr;41(4):59. doi: 10.1007/s10916-017-0698-3. Epub 2017 Feb 28.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验