Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland.
Brain Mind Institute, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
Sci Rep. 2017 Sep 25;7(1):12271. doi: 10.1038/s41598-017-12552-8.
Thalamus and cortex represent a highly integrated processing unit that elaborates sensory representations. Interposed between cortex and thalamus, the nucleus Reticularis thalami (nRt) receives strong cortical glutamatergic input and mediates top-down inhibitory feedback to thalamus. Despite growing appreciation that the nRt is integral for thalamocortical functions from sleep to attentional wakefulness, we still face considerable gaps in the synaptic bases for cortico-nRt communication and plastic regulation. Here, we examined modulation of nRt excitability by cortical synaptic drive in Ntsr1-Cre x ChR2 mice expressing Channelrhodopsin2 in layer 6 corticothalamic cells. We found that cortico-nRt synapses express a major portion of NMDA receptors containing the GluN2C subunit (GluN2C-NMDARs). Upon repetitive photoactivation (10 Hz trains), GluN2C-NMDARs induced a long-term increase in nRt excitability involving a potentiated recruitment of T-type Ca channels. In anaesthetized mice, analogous stimulation of cortical afferents onto nRt produced long-lasting changes in cortical local field potentials (LFPs), with delta oscillations being augmented at the expense of slow oscillations. This shift in LFP spectral composition was sensitive to NMDAR blockade in the nRt. Our data reveal a novel mechanism involving plastic modification of synaptically recruited T-type Ca channels and nRt bursting and indicate a critical role for GluN2C-NMDARs in thalamocortical rhythmogenesis.
丘脑和皮层代表着一个高度整合的处理单元,用于精细加工感觉表现。位于皮层和丘脑之间的丘脑网状核(nRt)接收来自皮层的强烈谷氨酸能输入,并介导对丘脑的自上而下的抑制性反馈。尽管人们越来越认识到 nRt 对于从睡眠到注意力清醒的丘脑皮质功能是不可或缺的,但我们仍然面临着皮质-nRt 通讯和可塑性调节的突触基础方面的巨大差距。在这里,我们在 Ntsr1-Cre x ChR2 小鼠中检查了皮层突触驱动对 nRt 兴奋性的调制,该小鼠在第 6 层皮质丘脑细胞中表达 Channelrhodopsin2。我们发现,皮质-nRt 突触表达了大部分含有 GluN2C 亚基(GluN2C-NMDARs)的 NMDA 受体。在重复光激活(10 Hz 串)时,GluN2C-NMDARs 诱导 nRt 兴奋性的长期增加,涉及 T 型钙通道的增强募集。在麻醉小鼠中,类似地刺激 nRt 的皮质传入会导致皮质局部场电位(LFPs)的长时间变化,其中 delta 振荡以牺牲慢振荡为代价增强。这种 LFPs 频谱组成的转变对 nRt 中的 NMDAR 阻断敏感。我们的数据揭示了一种涉及突触募集的 T 型钙通道和 nRt 爆发的可塑性修饰的新机制,并表明 GluN2C-NMDARs 在丘脑皮质节律发生中起着关键作用。