Indian Institute of Science Education and Research Tirupati , Tirupati 517507, India.
SLAC National Accelerator Laboratory , Menlo Park, California 94025, United States.
J Am Chem Soc. 2017 Oct 18;139(41):14352-14355. doi: 10.1021/jacs.7b06813. Epub 2017 Oct 4.
We have investigated the gas-phase production of isoquinoline by performing collisional activation on benzalaminoacetal, the first intermediate in the classic solution-phase Pomeranz-Fritsch synthesis of isoquinoline. We have elucidated the reaction pathways in the gas phase using tandem mass spectrometry. Unlike the corresponding condensed-phase reaction, where catalytic proton exchange between intermediate(s) and solvent (Brønsted-Lowry base) is known to drive the reaction, the gas-phase reaction follows the "mobile proton model" to form the products via a number of intermediates, some the same as in their condensed-phase counterparts. Energy-resolved mass spectrometry, deuterium labeling experiments, and theoretical calculations (B3LYP/6-31G**) identified 27 different reaction routes in the gas phase, forming a complex interlinked reaction network. The experimental measurements and theoretical calculations confirm the proton hopping onto different basic sites of the precursors and intermediates to transform them ultimately into isoquinoline.
我们通过对苯甲酰胺缩醛(经典的 Pomeranz-Fritsch 合成异喹啉的溶液相反应中的第一个中间体)进行碰撞激活,研究了异喹啉在气相中的生成。我们使用串联质谱法阐明了气相中的反应途径。与相应的凝聚相反应不同,在凝聚相反应中,中间体(s)和溶剂(布朗斯台德-劳里碱)之间的催化质子交换被认为是驱动反应的因素,而气相反应遵循“移动质子模型”,通过多个中间体形成产物,其中一些与凝聚相产物相同。能量分辨质谱、氘标记实验和理论计算(B3LYP/6-31G**)确定了气相中的 27 种不同反应途径,形成了一个复杂的相互关联的反应网络。实验测量和理论计算证实了质子在不同的前体和中间体的碱性部位上跳跃,最终将它们转化为异喹啉。