Bachmann S, De Roeck W, Fraas M
Mathematisches Institut der Universität München, Munich 80333, Germany.
Instituut voor Theoretische Fysica, KU Leuven, Leuven 8001, Belgium.
Phys Rev Lett. 2017 Aug 11;119(6):060201. doi: 10.1103/PhysRevLett.119.060201.
The first proof of the quantum adiabatic theorem was given as early as 1928. Today, this theorem is increasingly applied in a many-body context, e.g., in quantum annealing and in studies of topological properties of matter. In this setup, the rate of variation ϵ of local terms is indeed small compared to the gap, but the rate of variation of the total, extensive Hamiltonian, is not. Therefore, applications to many-body systems are not covered by the proofs and arguments in the literature. In this Letter, we prove a version of the adiabatic theorem for gapped ground states of interacting quantum spin systems, under assumptions that remain valid in the thermodynamic limit. As an application, we give a mathematical proof of Kubo's linear response formula for a broad class of gapped interacting systems. We predict that the density of nonadiabatic excitations is exponentially small in the driving rate and the scaling of the exponent depends on the dimension.
量子绝热定理的首个证明早在1928年就已给出。如今,该定理在多体情形下的应用越来越广泛,例如在量子退火以及物质拓扑性质的研究中。在此设定下,局部项的变化率ϵ相较于能隙确实很小,但总的广延哈密顿量的变化率并非如此。因此,文献中的证明和论证并未涵盖多体系统的应用。在本信函中,我们在热力学极限下仍然有效的假设下,证明了相互作用量子自旋系统带隙基态的绝热定理版本。作为一个应用,我们给出了一大类带隙相互作用系统的久保线性响应公式的数学证明。我们预测,非绝热激发的密度在驱动速率上呈指数级小,且指数的标度取决于维度。