Chibbaro Sergio, Dematteis Giovanni, Josserand Christophe, Rondoni Lamberto
Sorbonne Université, UPMC Université Paris 06, CNRS, UMR 7190, Institut Jean Le Rond d'Alembert, F-75005 Paris, France.
Dipartimento di Scienze Matematiche, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy.
Phys Rev E. 2017 Aug;96(2-1):021101. doi: 10.1103/PhysRevE.96.021101. Epub 2017 Aug 30.
The Sagdeev-Zaslavski (SZ) equation for wave turbulence is analytically derived, both in terms of a generating function and of a multipoint probability density function (PDF), for weakly interacting waves with initial random phases. When the initial amplitudes are also random, a one-point PDF equation is derived. Such analytical calculations remarkably agree with results obtained in totally different fashions. Numerical investigations of the two-dimensional nonlinear Schrödinger equation (NLSE) and of a vibrating plate prove the following: (i) Generic Hamiltonian four-wave systems rapidly attain a random distribution of phases independently of the slower dynamics of the amplitudes, vindicating the hypothesis of initially random phases. (ii) Relaxation of the Fourier amplitudes to the predicted stationary distribution (exponential) happens on a faster time scale than relaxation of the spectrum (Rayleigh-Jeans distribution). (iii) The PDF equation correctly describes dynamics under different forcings: The NLSE has an exponential PDF corresponding to a quasi-Gaussian solution, as the vibrating plates, that also shows some intermittency at very strong forcings.
针对具有初始随机相位的弱相互作用波,从生成函数和多点概率密度函数(PDF)两方面解析推导了用于波湍流的萨格迪耶夫 - 扎斯拉夫斯基(SZ)方程。当初始振幅也为随机时,推导了单点PDF方程。此类解析计算与以完全不同方式获得的结果显著吻合。对二维非线性薛定谔方程(NLSE)和振动板的数值研究证明了以下几点:(i)一般的哈密顿四波系统迅速达到相位的随机分布,而与振幅较慢的动力学无关,这证明了初始随机相位的假设。(ii)傅里叶振幅向预测的平稳分布(指数分布)的弛豫发生在比频谱(瑞利 - 金斯分布)弛豫更快的时间尺度上。(iii)PDF方程正确地描述了不同强迫下的动力学:NLSE具有对应于准高斯解的指数PDF,与振动板一样,在非常强的强迫下也表现出一些间歇性。