Suppr超能文献

鸽群圆形运动中的各向异性相互作用规则:基于稀疏贝叶斯学习的实证研究。

Anisotropic interaction rules in circular motions of pigeon flocks: An empirical study based on sparse Bayesian learning.

机构信息

Key Laboratory of Image Processing and Intelligent Control, School of Automation, State Key Laboratory of Digital Manufacturing Equipments and Technology, Huazhong University of Science and Technology, Wuhan 430074, P.R. China.

Web Sciences Center, University of Electronic Science and Technology of China, Chengdu 610054, P.R. China.

出版信息

Phys Rev E. 2017 Aug;96(2-1):022411. doi: 10.1103/PhysRevE.96.022411. Epub 2017 Aug 22.

Abstract

Coordination shall be deemed to the result of interindividual interaction among natural gregarious animal groups. However, revealing the underlying interaction rules and decision-making strategies governing highly coordinated motion in bird flocks is still a long-standing challenge. Based on analysis of high spatial-temporal resolution GPS data of three pigeon flocks, we extract the hidden interaction principle by using a newly emerging machine learning method, namely the sparse Bayesian learning. It is observed that the interaction probability has an inflection point at pairwise distance of 3-4 m closer than the average maximum interindividual distance, after which it decays strictly with rising pairwise metric distances. Significantly, the density of spatial neighbor distribution is strongly anisotropic, with an evident lack of interactions along individual velocity. Thus, it is found that in small-sized bird flocks, individuals reciprocally cooperate with a variational number of neighbors in metric space and tend to interact with closer time-varying neighbors, rather than interacting with a fixed number of topological ones. Finally, extensive numerical investigation is conducted to verify both the revealed interaction and decision-making principle during circular flights of pigeon flocks.

摘要

协调被认为是自然群居动物群体之间个体间相互作用的结果。然而,揭示控制鸟类群体中高度协调运动的潜在相互作用规则和决策策略仍然是一个长期存在的挑战。基于对三个鸽群的高时空分辨率 GPS 数据的分析,我们使用一种新兴的机器学习方法,即稀疏贝叶斯学习,提取隐藏的相互作用原理。观察到,相互作用概率在 3-4m 的成对距离处有一个转折点,比平均最大个体间距离更近,之后随着成对度量距离的增加严格衰减。值得注意的是,空间邻居分布的密度具有强烈的各向异性,个体速度方向上明显缺乏相互作用。因此,发现在小型鸟类群体中,个体在度量空间中与变化数量的邻居互惠合作,并倾向于与时间变化的更近邻居相互作用,而不是与固定数量的拓扑邻居相互作用。最后,进行了广泛的数值研究,以验证鸽群圆形飞行中发现的相互作用和决策原则。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验