Suppr超能文献

由马尔可夫输入过程驱动的 Preisach 磁滞模型。

Preisach models of hysteresis driven by Markovian input processes.

作者信息

Schubert Sven, Radons Günter

机构信息

Institute of Physics, Chemnitz University of Technology, D-09107 Chemnitz, Germany.

出版信息

Phys Rev E. 2017 Aug;96(2-1):022117. doi: 10.1103/PhysRevE.96.022117. Epub 2017 Aug 9.

Abstract

We study the response of Preisach models of hysteresis to stochastically fluctuating external fields. We perform numerical simulations, which indicate that analytical expressions derived previously for the autocorrelation functions and power spectral densities of the Preisach model with uncorrelated input, hold asymptotically also if the external field shows exponentially decaying correlations. As a consequence, the mechanisms causing long-term memory and 1/f noise in Preisach models with uncorrelated inputs still apply in the presence of fast decaying input correlations. We collect additional evidence for the importance of the effective Preisach density previously introduced even for Preisach models with correlated inputs. Additionally, we present some results for the output of the Preisach model with uncorrelated input using analytical methods. It is found, for instance, that in order to produce the same long-time tails in the output, the elementary hysteresis loops of large width need to have a higher weight for the generic Preisach model than for the symmetric Preisach model. Further, we find autocorrelation functions and power spectral densities to be monotonically decreasing independently of the choice of input and Preisach density.

摘要

我们研究了 Preisach 磁滞模型对随机波动外场的响应。我们进行了数值模拟,结果表明,先前针对输入不相关的 Preisach 模型的自相关函数和功率谱密度所推导的解析表达式,在外场呈现指数衰减相关性时也渐近成立。因此,在输入相关性快速衰减的情况下,导致输入不相关的 Preisach 模型中长期记忆和 1/f 噪声的机制仍然适用。我们收集了更多证据,证明即使对于具有相关输入的 Preisach 模型,先前引入的有效 Preisach 密度也很重要。此外,我们使用解析方法给出了输入不相关的 Preisach 模型输出的一些结果。例如,发现为了在输出中产生相同的长时间尾部,对于一般的 Preisach 模型,大宽度的基本磁滞回线需要比对称 Preisach 模型具有更高的权重。此外,我们发现自相关函数和功率谱密度单调递减,与输入和 Preisach 密度的选择无关。

相似文献

1
Preisach models of hysteresis driven by Markovian input processes.
Phys Rev E. 2017 Aug;96(2-1):022117. doi: 10.1103/PhysRevE.96.022117. Epub 2017 Aug 9.
2
Spectral properties of the Preisach hysteresis model with random input. I. General results.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jun;77(6 Pt 1):061133. doi: 10.1103/PhysRevE.77.061133. Epub 2008 Jun 25.
3
Spectral properties of the Preisach hysteresis model with random input. II. Universality classes for symmetric elementary loops.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jun;77(6 Pt 1):061134. doi: 10.1103/PhysRevE.77.061134. Epub 2008 Jun 25.
4
Hysteresis-induced long-time tails.
Phys Rev Lett. 2008 Jun 20;100(24):240602. doi: 10.1103/PhysRevLett.100.240602. Epub 2008 Jun 18.
5
Spectral density analysis of nonlinear hysteretic systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Oct;70(4 Pt 2):046124. doi: 10.1103/PhysRevE.70.046124. Epub 2004 Oct 28.
6
Review of Play and Preisach Models for Hysteresis in Magnetic Materials.
Materials (Basel). 2023 Mar 17;16(6):2422. doi: 10.3390/ma16062422.
9
Modeling long-range memory with stationary Markovian processes.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Mar;79(3 Pt 1):031116. doi: 10.1103/PhysRevE.79.031116. Epub 2009 Mar 23.
10
Dynamic Ferromagnetic Hysteresis Modelling Using a Preisach-Recurrent Neural Network Model.
Materials (Basel). 2020 Jun 4;13(11):2561. doi: 10.3390/ma13112561.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验