Gul Omer Melih, Demirekler Mubeccel
Department of Electrical and Electronics Engineering, Middle East Technical University (METU), 06531 Cankaya, Ankara, Turkey.
Sensors (Basel). 2017 Sep 26;17(10):2206. doi: 10.3390/s17102206.
This paper considers a single-hop wireless sensor network where a fusion center collects data from energy harvesting wireless sensors. The harvested energy is stored losslessly in an infinite-capacity battery at each sensor. In each time slot, the fusion center schedules sensors for data transmission over orthogonal channels. The fusion center does not have direct knowledge on the battery states of sensors, or the statistics of their energy harvesting processes. The fusion center only has information of the outcomes of previous transmission attempts. It is assumed that the sensors are data backlogged, there is no battery leakage and the communication is error-free. An energy harvesting sensor can transmit data to the fusion center whenever being scheduled only if it has enough energy for data transmission. We investigate average throughput of Round-Robin type myopic policy both analytically and numerically under an average reward (throughput) criterion. We show that Round-Robin type myopic policy achieves optimality for some class of energy harvesting processes although it is suboptimal for a broad class of energy harvesting processes.
本文考虑一种单跳无线传感器网络,其中融合中心从能量收集无线传感器收集数据。收集到的能量被无损存储在每个传感器的无限容量电池中。在每个时隙,融合中心在正交信道上调度传感器进行数据传输。融合中心对传感器的电池状态或其能量收集过程的统计信息没有直接了解。融合中心仅拥有先前传输尝试结果的信息。假设传感器有数据积压,不存在电池漏电且通信无差错。一个能量收集传感器只有在有足够能量进行数据传输时,被调度时才能将数据传输到融合中心。我们在平均奖励(吞吐量)准则下,通过解析和数值方法研究循环型近视策略的平均吞吐量。我们表明,循环型近视策略对于某些类别的能量收集过程实现了最优性,尽管它对于广泛类别的能量收集过程是次优的。