Suppr超能文献

开发用于预防相关疾病的亚单位疫苗:类毒素A和B的生物物理特性

Development of a subunit vaccine for prevention of associated diseases: Biophysical characterization of toxoids A and B.

作者信息

Gribenko Alexey, Severina Elena, Sidhu Maninder K, Jansen Kathrin U, Green Bruce A, Matsuka Yury V

机构信息

Pfizer Vaccine Research and Development, 401 N. Middletown Road, Pearl River, NY 10965, USA.

出版信息

Biochem Biophys Rep. 2017 Jan 5;9:193-202. doi: 10.1016/j.bbrep.2016.12.015. eCollection 2017 Mar.

Abstract

Inactivation of bacterial toxins for use in human vaccines traditionally is achieved by treatment with formaldehyde. In contrast, the bivalent experimental vaccine for the prevention of infections (CDI) that is currently being evaluated in clinical trials was produced using a different strategy. toxins A and B were inactivated using site-directed mutagenesis and treatment with 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride/-hydroxysulfosuccinimide (EDC/NHS). In the present work we investigate the effect of genetic and chemical modifications on the structure of inactivated toxins (toxoids) A and B. The far-UV circular dichroism (CD) spectra of wild type toxins, mutated toxins, and EDC/NHS-inactivated toxoids reveal that the secondary structure of all proteins is very similar. The near-UV CD spectra show that aromatic residues of all proteins are in a unique asymmetric environment, indicative of well-defined tertiary structure. These results along with the fluorescence emission maxima of 335 nm observed for all proteins suggest that the tertiary structure of toxoids A and B is preserved as well. Analytical ultracentrifugation data demonstrate that all proteins are predominantly monomeric with small fractions of higher molecular weight oligomeric species present in toxoids A and B. Differential scanning calorimetry data reveal that genetic mutations induce thermal destabilization of protein structures. Subsequent treatment with EDC/NHS results either in a minimal (1 °C) increase of apparent thermostability (toxoid B) or no change at all (toxoid A). Therefore, our two-step inactivation strategy is an effective approach for the preparation of non-toxic proteins maintaining native-like structure and conformation.

摘要

传统上,用于人类疫苗的细菌毒素灭活是通过甲醛处理来实现的。相比之下,目前正在临床试验中评估的用于预防感染(CDI)的二价实验性疫苗是采用不同策略生产的。毒素A和B通过定点诱变以及用1-乙基-3-[3-二甲基氨基丙基]碳二亚胺盐酸盐/羟基琥珀酰亚胺(EDC/NHS)处理来进行灭活。在本研究中,我们调查了基因和化学修饰对灭活毒素(类毒素)A和B结构的影响。野生型毒素、突变毒素和EDC/NHS灭活类毒素的远紫外圆二色性(CD)光谱表明,所有蛋白质的二级结构非常相似。近紫外CD光谱显示,所有蛋白质的芳香族残基处于独特的不对称环境中,这表明其具有明确的三级结构。这些结果以及所有蛋白质观察到的335 nm荧光发射最大值表明,类毒素A和B的三级结构也得以保留。分析超速离心数据表明,所有蛋白质主要为单体形式,类毒素A和B中存在少量高分子量寡聚体。差示扫描量热法数据显示,基因突变会导致蛋白质结构的热稳定性下降。随后用EDC/NHS处理,要么使表观热稳定性有最小程度的增加(1°C)(类毒素B),要么根本没有变化(类毒素A)。因此,我们的两步灭活策略是制备保持天然结构和构象的无毒蛋白质的有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38b9/5614615/05112bdeeae0/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验