Suppr超能文献

登革病毒的全基因组诱变揭示了NS1蛋白的可塑性,并使得感染性标记报告病毒的产生成为可能。

Genome-Wide Mutagenesis of Dengue Virus Reveals Plasticity of the NS1 Protein and Enables Generation of Infectious Tagged Reporter Viruses.

作者信息

Eyre Nicholas S, Johnson Stephen M, Eltahla Auda A, Aloi Maria, Aloia Amanda L, McDevitt Christopher A, Bull Rowena A, Beard Michael R

机构信息

Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia

Centre for Cancer Biology, SA Pathology, Adelaide, Australia.

出版信息

J Virol. 2017 Nov 14;91(23). doi: 10.1128/JVI.01455-17. Print 2017 Dec 1.

Abstract

Dengue virus (DENV) is a major global pathogen that causes significant morbidity and mortality in tropical and subtropical areas worldwide. An improved understanding of the regions within the DENV genome and its encoded proteins that are required for the virus replication cycle will expedite the development of urgently required therapeutics and vaccines. We subjected an infectious DENV genome to unbiased insertional mutagenesis and used next-generation sequencing to identify sites that tolerate 15-nucleotide insertions during the virus replication cycle in hepatic cell culture. This revealed that the regions within capsid, NS1, and the 3' untranslated region were the most tolerant of insertions. In contrast, prM- and NS2A-encoding regions were largely intolerant of insertions. Notably, the multifunctional NS1 protein readily tolerated insertions in regions within the , , and β- domains with minimal effects on viral RNA replication and infectious virus production. Using this information, we generated infectious reporter viruses, including a variant encoding the APEX2 electron microscopy tag in NS1 that uniquely enabled high-resolution imaging of its localization to the surface and interior of viral replication vesicles. In addition, we generated a tagged virus bearing an mScarlet fluorescent protein insertion in NS1 that, despite an impact on fitness, enabled live cell imaging of NS1 localization and traffic in infected cells. Overall, this genome-wide profile of DENV genome flexibility may be further dissected and exploited in reporter virus generation and antiviral strategies. Regions of genetic flexibility in viral genomes can be exploited in the generation of reporter virus tools and should arguably be avoided in antiviral drug and vaccine design. Here, we subjected the DENV genome to high-throughput insertional mutagenesis to identify regions of genetic flexibility and enable tagged reporter virus generation. In particular, the viral NS1 protein displayed remarkable tolerance of small insertions. This genetic flexibility enabled generation of several novel NS1-tagged reporter viruses, including an APEX2-tagged virus that we used in high-resolution imaging of NS1 localization in infected cells by electron microscopy. For the first time, this analysis revealed the localization of NS1 within viral replication factories known as "vesicle packets" (VPs), in addition to its acknowledged localization to the luminal surface of these VPs. Together, this genetic profile of DENV may be further refined and exploited in the identification of antiviral targets and the generation of reporter virus tools.

摘要

登革病毒(DENV)是一种主要的全球病原体,在全球热带和亚热带地区导致大量发病和死亡。更好地了解DENV基因组及其编码蛋白中病毒复制周期所需的区域,将加速急需的治疗方法和疫苗的开发。我们对具有感染性的DENV基因组进行了无偏向插入诱变,并使用下一代测序来识别在肝细胞培养的病毒复制周期中耐受15个核苷酸插入的位点。这表明衣壳、NS1和3'非翻译区内的区域对插入的耐受性最强。相比之下,编码prM和NS2A的区域对插入大多不耐受。值得注意的是,多功能NS1蛋白在α、β和β结构域内的区域很容易耐受插入,对病毒RNA复制和感染性病毒产生的影响最小。利用这些信息,我们构建了感染性报告病毒,包括一种在NS1中编码APEX2电子显微镜标签的变体,该变体独特地能够对其在病毒复制囊泡表面和内部的定位进行高分辨率成像。此外,我们构建了一种在NS1中插入mScarlet荧光蛋白的标记病毒,尽管对适应性有影响,但能够对NS1在感染细胞中的定位和运输进行活细胞成像。总体而言,DENV基因组灵活性的这种全基因组概况可在报告病毒生成和抗病毒策略中进一步剖析和利用。病毒基因组中的遗传灵活性区域可用于生成报告病毒工具,并且在抗病毒药物和疫苗设计中应避免。在这里,我们对DENV基因组进行了高通量插入诱变,以识别遗传灵活性区域并实现标记报告病毒的生成。特别是,病毒NS1蛋白对小插入显示出显著的耐受性。这种遗传灵活性使得能够生成几种新型的NS1标记报告病毒,包括一种APEX2标记病毒,我们通过电子显微镜将其用于对感染细胞中NS1定位的高分辨率成像。首次,该分析揭示了NS1在被称为“囊泡包”(VPs)的病毒复制工厂内的定位,此外还揭示了其在这些VPs腔表面的公认定位。总之,可以进一步完善和利用DENV的这种遗传概况,以识别抗病毒靶点和生成报告病毒工具。

相似文献

3
Functional Analysis of the Dengue Virus Genome Using an Insertional Mutagenesis Screen.
J Virol. 2018 Mar 14;92(7). doi: 10.1128/JVI.02085-17. Print 2018 Apr 1.
5
Dengue Virus Non-structural Protein 1 Modulates Infectious Particle Production via Interaction with the Structural Proteins.
PLoS Pathog. 2015 Nov 12;11(11):e1005277. doi: 10.1371/journal.ppat.1005277. eCollection 2015.
7
Two distinct sets of NS2A molecules are responsible for dengue virus RNA synthesis and virion assembly.
J Virol. 2015 Jan 15;89(2):1298-313. doi: 10.1128/JVI.02882-14. Epub 2014 Nov 12.
8
A Proline-Rich N-Terminal Region of the Dengue Virus NS3 Is Crucial for Infectious Particle Production.
J Virol. 2016 May 12;90(11):5451-61. doi: 10.1128/JVI.00206-16. Print 2016 Jun 1.

引用本文的文献

1
2
Genomic hotspots in the DENV-2 serotype (E, NS4B, and NS5 genes) are associated with dengue disease severity in the endemic region of India.
PLoS Negl Trop Dis. 2025 Apr 29;19(4):e0013034. doi: 10.1371/journal.pntd.0013034. eCollection 2025 Apr.
4
Development of a reporter HBoV1 strain for antiviral drug screening and life cycle studies.
Virol Sin. 2025 Apr;40(2):275-283. doi: 10.1016/j.virs.2025.03.009. Epub 2025 Mar 25.
5
The NS1 protein of contemporary West African Zika virus potentiates viral replication and reduces innate immune activation.
PLoS Negl Trop Dis. 2024 Aug 23;18(8):e0012146. doi: 10.1371/journal.pntd.0012146. eCollection 2024 Aug.
9
The cargo adapter protein CLINT1 is phosphorylated by the Numb-associated kinase BIKE and mediates dengue virus infection.
J Biol Chem. 2022 Jun;298(6):101956. doi: 10.1016/j.jbc.2022.101956. Epub 2022 Apr 20.
10
Flavivirus Persistence in Wildlife Populations.
Viruses. 2021 Oct 18;13(10):2099. doi: 10.3390/v13102099.

本文引用的文献

1
Improved split fluorescent proteins for endogenous protein labeling.
Nat Commun. 2017 Aug 29;8(1):370. doi: 10.1038/s41467-017-00494-8.
2
Vaccine Mediated Protection Against Zika Virus-Induced Congenital Disease.
Cell. 2017 Jul 13;170(2):273-283.e12. doi: 10.1016/j.cell.2017.06.040.
3
Viperin is an important host restriction factor in control of Zika virus infection.
Sci Rep. 2017 Jun 30;7(1):4475. doi: 10.1038/s41598-017-04138-1.
6
Screening Bioactives Reveals Nanchangmycin as a Broad Spectrum Antiviral Active against Zika Virus.
Cell Rep. 2017 Jan 17;18(3):804-815. doi: 10.1016/j.celrep.2016.12.068.
7
The Dengue Vaccine Dilemma: Balancing the Individual and Population Risks and Benefits.
PLoS Med. 2016 Nov 29;13(11):e1002182. doi: 10.1371/journal.pmed.1002182. eCollection 2016 Nov.
8
mScarlet: a bright monomeric red fluorescent protein for cellular imaging.
Nat Methods. 2017 Jan;14(1):53-56. doi: 10.1038/nmeth.4074. Epub 2016 Nov 21.
9
Properties and Functions of the Dengue Virus Capsid Protein.
Annu Rev Virol. 2016 Sep 29;3(1):263-281. doi: 10.1146/annurev-virology-110615-042334. Epub 2016 Aug 3.
10
A Proline-Rich N-Terminal Region of the Dengue Virus NS3 Is Crucial for Infectious Particle Production.
J Virol. 2016 May 12;90(11):5451-61. doi: 10.1128/JVI.00206-16. Print 2016 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验