Zhang Weiwei, Serna Samuel, Le Roux Xavier, Vivien Laurent, Cassan Eric
Opt Lett. 2017 Sep 1;42(17):3323-3326. doi: 10.1364/OL.42.003323.
In this work, we theoretically and experimentally demonstrate an unusual air mode silicon nanobeam cavity design with dielectric mirrors. This design combines an extremely strong localization of light-matter interaction in the cavity center and a reduced sensitivity of the resonator wavelength to temperature or top cladding material refractive index variations. The proposed approach allows accurate control of the resonator cavity quality factor combined with flexible choice of the cavity effective mode volume. Q-factors higher than 50,000 have been determined for such cavities and mode volumes smaller than (λ/n) were achieved in the investigated configurations. Such a cavity design provides a robust approach to study the hybrid integration of various active materials in the silicon platform, including carbon nanotubes, III-V nanowires, graphene, etc., for light emission, modulation, or detection.
在这项工作中,我们在理论和实验上展示了一种采用介质镜的非同寻常的空气模式硅纳米束腔设计。这种设计结合了腔中心光与物质相互作用的极强局域化以及谐振器波长对温度或顶部包层材料折射率变化的较低敏感度。所提出的方法允许精确控制谐振腔品质因数,并能灵活选择腔的有效模式体积。对于此类腔体,已确定品质因数高于50000,并且在所研究的配置中实现了小于(λ/n)的模式体积。这种腔体设计为研究硅平台中各种有源材料(包括碳纳米管、III-V族纳米线、石墨烯等)的混合集成以用于发光、调制或检测提供了一种可靠的方法。