Suppr超能文献

基于特征值的模型重建中未知量自动定标方法:在实时相位对比流动 MRI 中的应用。

An eigenvalue approach for the automatic scaling of unknowns in model-based reconstructions: Application to real-time phase-contrast flow MRI.

机构信息

Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany.

Institut für Numerische und Angewandte Mathematik, Georg-August-Universität, Göttingen, Germany.

出版信息

NMR Biomed. 2017 Dec;30(12). doi: 10.1002/nbm.3835. Epub 2017 Sep 28.

Abstract

The purpose of this work is to develop an automatic method for the scaling of unknowns in model-based nonlinear inverse reconstructions and to evaluate its application to real-time phase-contrast (RT-PC) flow magnetic resonance imaging (MRI). Model-based MRI reconstructions of parametric maps which describe a physical or physiological function require the solution of a nonlinear inverse problem, because the list of unknowns in the extended MRI signal equation comprises multiple functional parameters and all coil sensitivity profiles. Iterative solutions therefore rely on an appropriate scaling of unknowns to numerically balance partial derivatives and regularization terms. The scaling of unknowns emerges as a self-adjoint and positive-definite matrix which is expressible by its maximal eigenvalue and solved by power iterations. The proposed method is applied to RT-PC flow MRI based on highly undersampled acquisitions. Experimental validations include numerical phantoms providing ground truth and a wide range of human studies in the ascending aorta, carotid arteries, deep veins during muscular exercise and cerebrospinal fluid during deep respiration. For RT-PC flow MRI, model-based reconstructions with automatic scaling not only offer velocity maps with high spatiotemporal acuity and much reduced phase noise, but also ensure fast convergence as well as accurate and precise velocities for all conditions tested, i.e. for different velocity ranges, vessel sizes and the simultaneous presence of signals with velocity aliasing. In summary, the proposed automatic scaling of unknowns in model-based MRI reconstructions yields quantitatively reliable velocities for RT-PC flow MRI in various experimental scenarios.

摘要

这项工作的目的是开发一种用于基于模型的非线性反演重建中未知量缩放的自动方法,并评估其在实时相位对比(RT-PC)磁共振成像(MRI)中的应用。描述物理或生理功能的参数图的基于模型的 MRI 重建需要求解非线性反问题,因为扩展 MRI 信号方程中的未知量列表包括多个功能参数和所有线圈灵敏度分布。因此,迭代解依赖于适当的未知量缩放,以数值平衡偏导数和正则化项。未知量的缩放表现为自伴随和正定矩阵,可以通过其最大特征值表示,并通过幂迭代求解。所提出的方法应用于基于高度欠采样采集的 RT-PC 血流 MRI。实验验证包括提供真实值的数值体模以及在升主动脉、颈动脉、肌肉运动期间的深静脉和深呼吸期间的脑脊液中进行的广泛人体研究。对于 RT-PC 血流 MRI,具有自动缩放的基于模型的重建不仅提供了具有高时空分辨率和大大降低的相位噪声的速度图,而且还确保了快速收敛以及所有测试条件下的准确和精确速度,即不同的速度范围、血管大小以及具有速度混叠的信号同时存在的情况。总之,所提出的基于模型的 MRI 重建中未知量的自动缩放可在各种实验情况下为 RT-PC 血流 MRI 提供定量可靠的速度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验