Suppr超能文献

带相反电荷的棒状大分子之间的斥力:过充电和离子限制的作用。

Repulsion between oppositely charged rod-shaped macromolecules: Role of overcharging and ionic confinement.

机构信息

Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, 00076 Aalto, Finland.

Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, USA.

出版信息

J Chem Phys. 2017 Sep 28;147(12):124901. doi: 10.1063/1.4993492.

Abstract

The interaction between two oppositely charged rod-shaped macro-ions in a micro-ion solution is investigated via Monte Carlo simulations of the primitive model. The focus is on the asymmetry in rod and/or ion charge, i.e., conditions where oppositely charged objects can repel one another. For equally and oppositely charged rods with asymmetric z:1 micro-ions, repulsion may be induced by overcharging one of the rods with the z valent ions. For asymmetrically charged rods in a symmetric z:z micro-ion solution, a repulsive interaction-at separation of the order of one ion diameter-can arise via an unbalanced osmotic pressure contribution from the ionic atmosphere in the inter-rod space, and an attractive interaction-at a smaller separation-may occur due to a "squeezing out" of the micro-ions from the space between the rods (with a consequent gain in entropy). The thermodynamics of each mechanism is investigated in terms of rod charge and size and micro-ion valence, size, and concentration. Our findings contribute to the understanding of the complex role of charge asymmetry on the interaction of, for example, oppositely charged polyelectrolytes, functionalized nanotubes, and rod-like biomolecules, e.g., viruses.

摘要

通过对原始模型的蒙特卡罗模拟,研究了微离子溶液中两个带相反电荷的棒状大分子离子之间的相互作用。研究的重点是棒和/或离子电荷的不对称性,即带相反电荷的物体可以相互排斥的情况。对于带相同电荷和相反电荷的棒状和具有不对称 z:1 微离子的情况,通过用 z 价离子对其中一个棒状过度充电,可以诱导排斥。对于带不对称电荷的棒状在对称 z:z 微离子溶液中,由于棒间空间中离子气氛的不平衡渗透压贡献,可以在一个大约一个离子直径的分离处产生排斥相互作用,并且由于“挤出”棒之间的空间中的微离子(随之获得熵),可能会发生吸引力相互作用(在较小的分离处)。根据棒状电荷和大小以及微离子价、大小和浓度,研究了每种机制的热力学。我们的研究结果有助于理解电荷不对称性在例如带相反电荷的聚电解质、功能化纳米管和棒状生物分子(例如病毒)相互作用中的复杂作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验