Otsuka Masaaki, Ueta Toshiya, van Hoof Peter A M, Sahai Raghvendra, Aleman Isabel, Zijlstra Albert A, Chu You-Hua, Villaver Eva, Leal-Ferreira Marcelo L, Kastner Joel, Szczerba Ryszard, Exter Katrina M
Institute of Astronomy and Astrophysics, 11F of Astronomy-Mathematics Building, AS/NTU. No.1, Section 4, Roosevelt Rd., Taipei 10617, Taiwan, ROC.
Department of Physics and Astronomy, University of Denver, 2112 E. Wesley Ave., Denver, CO 80210, USA.
Astrophys J Suppl Ser. 2017 Aug;231(2). doi: 10.3847/1538-4365/aa8175. Epub 2017 Aug 18.
We perform a comprehensive analysis of the planetary nebula (PN) NGC 6781 to investigate the physical conditions of each of its ionized, atomic, and molecular gas and dust components and the object's evolution, based on panchromatic observational data ranging from UV to radio. Empirical nebular elemental abundances, compared with theoretical predictions via nucleosynthesis models of asymptotic giant branch (AGB) stars, indicate that the progenitor is a solar-metallicity, 2.25-3.0 initial-mass star. We derive the best-fit distance of 0.46 kpc by fitting the stellar luminosity (as a function of the distance and effective temperature of the central star) with the adopted post-AGB evolutionary tracks. Our excitation energy diagram analysis indicates high-excitation temperatures in the photodissociation region (PDR) beyond the ionized part of the nebula, suggesting extra heating by shock interactions between the slow AGB wind and the fast PN wind. Through iterative fitting using the Cloudy code with empirically derived constraints, we find the best-fit dusty photoionization model of the object that would inclusively reproduce all of the adopted panchromatic observational data. The estimated total gas mass (0.41 ) corresponds to the mass ejected during the last AGB thermal pulse event predicted for a 2.5 initial-mass star. A significant fraction of the total mass (about 70%) is found to exist in the PDR, demonstrating the critical importance of the PDR in PNe that are generally recognized as the hallmark of ionized/H regions.
我们对行星状星云(PN)NGC 6781进行了全面分析,以基于从紫外到射电的全色观测数据,研究其电离、原子、分子气体及尘埃各组分的物理条件以及该天体的演化。将实测的星云元素丰度与通过渐近巨星分支(AGB)恒星核合成模型得出的理论预测结果相比较,表明其前身星是一颗太阳金属丰度、初始质量为2.25 - 3.0的恒星。通过将恒星光度(作为中心星距离和有效温度的函数)与所采用的AGB后演化轨迹进行拟合,我们得出最佳拟合距离为0.46千秒差距。我们的激发能图分析表明,在星云电离部分之外的光解离区域(PDR)存在高激发温度,这表明慢速AGB风与快速PN风之间的激波相互作用产生了额外加热。通过使用Cloudy代码并结合实测约束进行迭代拟合,我们找到了该天体的最佳拟合含尘光致电离模型,该模型能全面再现所有采用的全色观测数据。估计的总气体质量(0.41)与预测的质量相对应,即一颗初始质量为2.5的恒星在最后一次AGB热脉冲事件期间抛出的质量。发现总质量的很大一部分(约70%)存在于PDR中,这表明PDR在通常被视为电离/H区标志的行星状星云中至关重要。