Suppr超能文献

基于增强型色散波产生的可见连续脉冲用于内源性荧光成像。

Visible continuum pulses based on enhanced dispersive wave generation for endogenous fluorescence imaging.

作者信息

Cui Quan, Chen Zhongyun, Liu Qian, Zhang Zhihong, Luo Qingming, Fu Ling

机构信息

Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.

Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.

出版信息

Biomed Opt Express. 2017 Aug 7;8(9):4026-4036. doi: 10.1364/BOE.8.004026. eCollection 2017 Sep 1.

Abstract

In this study, we demonstrate endogenous fluorescence imaging using visible continuum pulses based on 100-fs Ti:sapphire oscillator and a nonlinear photonic crystal fiber. Broadband (500-700 nm) and high-power (150 mW) continuum pulses are generated through enhanced dispersive wave generation by pumping femtosecond pulses at the anomalous dispersion region near zero-dispersion wavelength of high-nonlinear photonic crystal fibers. We also minimize the continuum pulse width by determining the proper fiber length. The visible-wavelength two-photon microscopy produces NADH and tryptophan images of mice tissues simultaneously. Our 500-700 nm continuum pulses support extending nonlinear microscopy to visible wavelength range that is inaccessible to 100-fs Ti:sapphire oscillators and other applications requiring visible laser pulses.

摘要

在本研究中,我们展示了基于100飞秒钛宝石振荡器和非线性光子晶体光纤的可见连续脉冲内源性荧光成像技术。通过在高非线性光子晶体光纤零色散波长附近的反常色散区域泵浦飞秒脉冲,利用增强的色散波产生技术,产生了宽带(500-700纳米)和高功率(150毫瓦)的连续脉冲。我们还通过确定合适的光纤长度,将连续脉冲宽度降至最低。可见波长双光子显微镜可同时生成小鼠组织的NADH和色氨酸图像。我们的500-700纳米连续脉冲有助于将非线性显微镜技术扩展到100飞秒钛宝石振荡器和其他需要可见激光脉冲的应用无法达到的可见光波长范围。

相似文献

1
Visible continuum pulses based on enhanced dispersive wave generation for endogenous fluorescence imaging.
Biomed Opt Express. 2017 Aug 7;8(9):4026-4036. doi: 10.1364/BOE.8.004026. eCollection 2017 Sep 1.
7
Nonlinear-optical spectral transformation of few-cycle laser pulses in photonic-crystal fibers.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Nov;72(5 Pt 2):056603. doi: 10.1103/PhysRevE.72.056603. Epub 2005 Nov 4.
9
Pulse compression in two-photon excitation fluorescence microscopy.
Opt Express. 2010 Jul 5;18(14):14893-904. doi: 10.1364/OE.18.014893.

本文引用的文献

1
Progress in Cherenkov femtosecond fiber lasers.
J Phys D Appl Phys. 2016 Jan 20;49(2). doi: 10.1088/0022-3727/49/2/023001. Epub 2015 Dec 9.
2
Cell and brain tissue imaging of the flavonoid fisetin using label-free two-photon microscopy.
Neurochem Int. 2015 Oct;89:243-8. doi: 10.1016/j.neuint.2015.08.003. Epub 2015 Aug 10.
3
Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging.
J Biomed Opt. 2015 Oct;20(10):101202. doi: 10.1117/1.JBO.20.10.101202.
4
In vivo visualization of skin inflammation by optical coherence tomography and two-photon microscopy.
Biomed Opt Express. 2015 Jun 15;6(7):2512-21. doi: 10.1364/BOE.6.002512. eCollection 2015 Jul 1.
8
Coherent fiber supercontinuum for biophotonics.
Laser Photon Rev. 2013 Sep 1;7(5). doi: 10.1002/lpor.201200014.
9
Two-photon excitation in functional biological imaging.
J Biomed Opt. 1996 Jul;1(3):296-304. doi: 10.1117/12.242945.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验