Suppr超能文献

使用锥形七芯光纤操控大肠杆菌的高阶微纤维模式。

Higher-order micro-fiber modes for Escherichia coli manipulation using a tapered seven-core fiber.

作者信息

Rong Qiangzhou, Zhou Yi, Yin Xunli, Shao Zhihua, Qiao Xueguang

机构信息

Department of Physics, Northwest University, Xi'an 710069, China.

School of Science, Xi'an Shiyou University, Xi'an 710065, China.

出版信息

Biomed Opt Express. 2017 Aug 14;8(9):4096-4107. doi: 10.1364/BOE.8.004096. eCollection 2017 Sep 1.

Abstract

Optical manipulation using optical micro- and nano-fibers has shown potential for controlling bacterial activities such as E. coli trapping, propelling, and binding. Most of these manipulations have been performed using the propagation of the fundamental mode through the fiber. However, along the maximum mode-intensity axis, the higher-order modes have longer evanescent field extensions and larger field amplitudes at the fiber waist than the fundamental mode, opening up new possibilities for manipulating E. coli bacteria. In this work, a compact seven-core fiber (SCF)-based micro-fiber/optical tweezers was demonstrated for trapping, propelling, and rotating E. coli bacteria using the excitation of higher-order modes. The diameter of the SCF taper was 4 µm at the taper waist, which was much larger than that of previous nano-fiber tweezers. The laser wavelength was tunable from 1500 nm to 1600 nm, simultaneously causing photophoretic force, gradient force, and scattering force. This work provides a new opportunity for better understanding optical manipulation using higher-order modes at the single-cell level.

摘要

利用光学微纳光纤进行的光学操控已显示出控制细菌活动的潜力,如大肠杆菌的捕获、推进和结合。这些操控大多是通过基模在光纤中的传播来实现的。然而,沿着最大模强度轴,高阶模在光纤腰部的倏逝场扩展比基模更长,场振幅也更大,这为操控大肠杆菌开辟了新的可能性。在这项工作中,展示了一种基于紧凑型七芯光纤(SCF)的微光纤/光镊,用于利用高阶模的激发来捕获、推进和旋转大肠杆菌。SCF锥在锥腰处的直径为4 µm,比以前的纳米光纤镊大得多。激光波长可在1500 nm至1600 nm范围内调谐,同时产生光泳力、梯度力和散射力。这项工作为在单细胞水平上更好地理解利用高阶模进行光学操控提供了新机会。

相似文献

1
Higher-order micro-fiber modes for Escherichia coli manipulation using a tapered seven-core fiber.
Biomed Opt Express. 2017 Aug 14;8(9):4096-4107. doi: 10.1364/BOE.8.004096. eCollection 2017 Sep 1.
2
Higher order microfibre modes for dielectric particle trapping and propulsion.
Sci Rep. 2015 Mar 13;5:9077. doi: 10.1038/srep09077.
3
Optical Fiber Tweezers: A Versatile Tool for Optical Trapping and Manipulation.
Micromachines (Basel). 2020 Jan 21;11(2):114. doi: 10.3390/mi11020114.
5
Twin-core fiber optical tweezers.
Opt Express. 2008 Mar 31;16(7):4559-66. doi: 10.1364/oe.16.004559.
6
High-Order Fiber Mode Beam Parameter Optimization for Transport and Rotation of Single Cells.
Micromachines (Basel). 2021 Feb 23;12(2):226. doi: 10.3390/mi12020226.
8
Fiber-integrated optical tweezers for ballistic transport and trapping yeast cells.
Nanoscale. 2022 May 16;14(18):6941-6948. doi: 10.1039/d1nr08348a.
10
Single-fiber tweezers applied for dye lasing in a fluid droplet.
Opt Lett. 2016 Jul 1;41(13):2966-9. doi: 10.1364/OL.41.002966.

引用本文的文献

1
Harnessing optical forces with advanced nanophotonic structures: principles and applications.
Discov Nano. 2025 May 3;20(1):76. doi: 10.1186/s11671-025-04252-4.
2
Particle trapping with optical nanofibers: a review [Invited].
Biomed Opt Express. 2023 Nov 3;14(12):6172-6189. doi: 10.1364/BOE.503146. eCollection 2023 Dec 1.

本文引用的文献

3
Optical regulation of cell chain.
Sci Rep. 2015 Jun 22;5:11578. doi: 10.1038/srep11578.
4
Higher order microfibre modes for dielectric particle trapping and propulsion.
Sci Rep. 2015 Mar 13;5:9077. doi: 10.1038/srep09077.
5
Graded-index optical fiber tweezers with long manipulation length.
Opt Express. 2014 Oct 20;22(21):25267-76. doi: 10.1364/OE.22.025267.
6
Selective particle trapping and optical binding in the evanescent field of an optical nanofiber.
Opt Express. 2014 Jun 30;22(13):16322-34. doi: 10.1364/OE.22.016322.
7
Controllable orientation of single silver nanowire using two fiber probes.
Sci Rep. 2014 Feb 5;4:3989. doi: 10.1038/srep03989.
9
Optical trapping, driving, and arrangement of particles using a tapered fibre probe.
Sci Rep. 2012;2:818. doi: 10.1038/srep00818. Epub 2012 Nov 12.
10
A nanodiamond-tapered fiber system with high single-mode coupling efficiency.
Opt Express. 2012 May 7;20(10):10490-7. doi: 10.1364/OE.20.010490.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验