Suppr超能文献

密集的生长纤维连接诱导 3 铰链脑回折叠。

Denser Growing Fiber Connections Induce 3-hinge Gyral Folding.

机构信息

School of Automation, Northwestern Polytechnical University, Xi'an, China.

Cortical Architecture Imaging and Discovery Lab, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA.

出版信息

Cereb Cortex. 2018 Mar 1;28(3):1064-1075. doi: 10.1093/cercor/bhx227.

Abstract

Recent studies have shown that quantitative description of gyral shape patterns offers a novel window to examine the relationship between brain structure and function. Along this research line, this paper examines a unique and interesting type of cortical gyral region where 3 different gyral crests meet, termed 3-hinge gyral region. We extracted 3-hinge gyral regions in macaque/chimpanzee/human brains, quantified and compared the relevant DTI-derived fiber densities in 3-hinge and 2-hinge gyral regions. Our observations consistently showed that DTI-derived fiber densities in 3-hinge regions are much higher than those in 2-hinge regions. Therefore, we hypothesize that besides the cortical expansion, denser fiber connections can induce the formation of 3-hinge gyri. To examine the biomechanical basis of this hypothesis, we constructed a series of 3-dimensional finite element soft tissue models based on continuum growth theory to investigate fundamental biomechanical mechanisms of consistent 3-hinge gyri formation. Our computational simulation results consistently showed that during gyrification gyral regions with higher concentrations of growing axonal fibers tend to form 3-hinge gyri. Our integrative approach combining neuroimaging data analysis and computational modeling appears effective in probing a plausible theory of 3-hinge gyri formation and providing new insights into structural and functional cortical architectures and their relationship.

摘要

最近的研究表明,对脑回形状模式进行定量描述为研究大脑结构和功能之间的关系提供了一个新的窗口。沿着这条研究路线,本文研究了一种独特而有趣的皮质脑回区域,其中有 3 个不同的脑回嵴交汇,称为 3 铰链脑回区域。我们在猕猴/黑猩猩/人脑脑中提取了 3 铰链脑回区域,量化并比较了 3 铰链和 2 铰链脑回区域的相关 DTI 衍生纤维密度。我们的观察结果一致表明,3 铰链区域的 DTI 衍生纤维密度明显高于 2 铰链区域。因此,我们假设除了皮质扩张之外,更密集的纤维连接可以诱导 3 铰链脑回的形成。为了检验这一假设的生物力学基础,我们根据连续体生长理论构建了一系列三维有限元软组织模型,以研究一致的 3 铰链脑回形成的基本生物力学机制。我们的计算模拟结果一致表明,在脑回形成过程中,具有更高浓度生长轴突纤维的脑回区域更倾向于形成 3 铰链脑回。我们的综合方法结合神经影像学数据分析和计算建模,有效地探测了 3 铰链脑回形成的合理理论,并为结构和功能皮质结构及其关系提供了新的见解。

相似文献

1
Denser Growing Fiber Connections Induce 3-hinge Gyral Folding.
Cereb Cortex. 2018 Mar 1;28(3):1064-1075. doi: 10.1093/cercor/bhx227.
2
Commonly preserved and species-specific gyral folding patterns across primate brains.
Brain Struct Funct. 2017 Jul;222(5):2127-2141. doi: 10.1007/s00429-016-1329-3. Epub 2016 Oct 31.
3
Coevolution of gyral folding and structural connection patterns in primate brains.
Cereb Cortex. 2013 May;23(5):1208-17. doi: 10.1093/cercor/bhs113. Epub 2012 May 14.
4
Cortical 3-hinges could serve as hubs in cortico-cortical connective network.
Brain Imaging Behav. 2020 Dec;14(6):2512-2529. doi: 10.1007/s11682-019-00204-6.
5
Mechanism Exploration of 3-Hinge Gyral Formation and Pattern Recognition.
Cereb Cortex Commun. 2021 Jul 3;2(3):tgab044. doi: 10.1093/texcom/tgab044. eCollection 2021.
6
Identifying Cross-individual Correspondences of 3-hinge Gyri.
Med Image Anal. 2020 Jul;63:101700. doi: 10.1016/j.media.2020.101700. Epub 2020 Apr 13.
7
Spatiotemporal patterns of cortical fiber density in developing infants, and their relationship with cortical thickness.
Hum Brain Mapp. 2015 Dec;36(12):5183-95. doi: 10.1002/hbm.23003. Epub 2015 Sep 29.
8
Gyral folding pattern analysis via surface profiling.
Neuroimage. 2010 Oct 1;52(4):1202-14. doi: 10.1016/j.neuroimage.2010.04.263. Epub 2010 May 26.
9
Exploring 3-hinge gyral folding patterns among HCP Q3 868 human subjects.
Hum Brain Mapp. 2018 Oct;39(10):4134-4149. doi: 10.1002/hbm.24237. Epub 2018 Jun 26.
10

引用本文的文献

1
Mechanics of the Spatiotemporal Evolution of Sulcal Pits in the Folding Brain.
Hum Brain Mapp. 2025 Sep;46(13):e70332. doi: 10.1002/hbm.70332.
2
UNSUPERVISED CORTICAL SURFACE REGISTRATION NETWORK FOR ALIGNING GYRALNET.
Proc IEEE Int Symp Biomed Imaging. 2025 Apr;2025. doi: 10.1109/isbi60581.2025.10981138. Epub 2025 May 12.
3
Exploring hyperelastic material model discovery for human brain cortex: Multivariate analysis vs. artificial neural network approaches.
J Mech Behav Biomed Mater. 2025 May;165:106934. doi: 10.1016/j.jmbbm.2025.106934. Epub 2025 Feb 10.
4
Stress landscape of folding brain serves as a map for axonal pathfinding.
Nat Commun. 2025 Jan 30;16(1):1187. doi: 10.1038/s41467-025-56362-3.
5
Learning lifespan brain anatomical correspondence via cortical developmental continuity transfer.
Med Image Anal. 2025 Jan;99:103328. doi: 10.1016/j.media.2024.103328. Epub 2024 Aug 30.
6
Unique longitudinal contributions of sulcal interruptions to reading acquisition in children.
bioRxiv. 2024 Jul 30:2024.07.30.605574. doi: 10.1101/2024.07.30.605574.
7
Fundamental functional differences between gyri and sulci: implications for brain function, cognition, and behavior.
Psychoradiology. 2021 Mar 25;1(1):23-41. doi: 10.1093/psyrad/kkab002. eCollection 2021 Mar.
8
Frequency-specific functional difference between gyri and sulci in naturalistic paradigm fMRI.
Brain Struct Funct. 2024 Mar;229(2):431-442. doi: 10.1007/s00429-023-02746-4. Epub 2024 Jan 9.
9
Depicting the anatomy of the gyral white matter:
Brain Commun. 2023 Oct 11;5(5):fcad265. doi: 10.1093/braincomms/fcad265. eCollection 2023.
10
Mechanical hierarchy in the formation and modulation of cortical folding patterns.
Sci Rep. 2023 Aug 14;13(1):13177. doi: 10.1038/s41598-023-40086-9.

本文引用的文献

1
Mechanisms of circumferential gyral convolution in primate brains.
J Comput Neurosci. 2017 Jun;42(3):217-229. doi: 10.1007/s10827-017-0637-9. Epub 2017 Mar 7.
2
3
Commonly preserved and species-specific gyral folding patterns across primate brains.
Brain Struct Funct. 2017 Jul;222(5):2127-2141. doi: 10.1007/s00429-016-1329-3. Epub 2016 Oct 31.
4
Surface and interfacial creases in a bilayer tubular soft tissue.
Phys Rev E. 2016 Aug;94(2-1):022405. doi: 10.1103/PhysRevE.94.022405. Epub 2016 Aug 9.
5
Secondary instabilities modulate cortical complexity in the mammalian brain.
Philos Mag (Abingdon). 2015;95(28-30):3244-3256. doi: 10.1080/14786435.2015.1024184. Epub 2015 Mar 30.
6
Sparse representation of HCP grayordinate data reveals novel functional architecture of cerebral cortex.
Hum Brain Mapp. 2015 Dec;36(12):5301-19. doi: 10.1002/hbm.23013. Epub 2015 Oct 14.
7
Role of mechanical factors in cortical folding development.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Sep;92(3):032701. doi: 10.1103/PhysRevE.92.032701. Epub 2015 Sep 1.
8
Spatiotemporal patterns of cortical fiber density in developing infants, and their relationship with cortical thickness.
Hum Brain Mapp. 2015 Dec;36(12):5183-95. doi: 10.1002/hbm.23003. Epub 2015 Sep 29.
9
Cortical Folding Pattern and its Consistency Induced by Biological Growth.
Sci Rep. 2015 Sep 25;5:14477. doi: 10.1038/srep14477.
10
Cortical Folding Development Study based on Over-Complete Spherical Wavelets.
Proc IEEE Int Conf Comput Vis. 2007 Oct;2007. doi: 10.1109/ICCV.2007.4409137.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验