Shakhmin Anton, Hall Mary P, Machleidt Thomas, Walker Joel R, Wood Keith V, Kirkland Thomas A
Promega Biosciences LLC, 277 Granada Dr., San Luis Obispo, CA 93401, USA.
Org Biomol Chem. 2017 Oct 18;15(40):8559-8567. doi: 10.1039/c7ob01985h.
We report the synthesis and characterization of novel coelenterazine analogues that demonstrate a red-shift in their bioluminescent emission with NanoLuc luciferase. These coelenterazines can be tuned to shift the bioluminescent emission from blue light in the native system. In particular, direct attachment of an aryl moiety to the imidazopyrazinone core of furimazine at the C8 position provides a significant red-shift while maintaining reasonable light output. In addition, modification of the C6 aryl moiety provided additive red-shifts, and by combining the most promising modifications we report a coelenterazine with a maximum emission near 600 nm with NanoLuc. Finally, we show that this new bioluminescent system is capable of efficient BRET to far-red fluorophores. We anticipate these new principles of NanoLuc substrate design will impact applications that depend on shifting the colour of emission to the red, most notably in vivo bioluminescent imaging.
我们报告了新型腔肠素类似物的合成与表征,这些类似物与纳米荧光素酶(NanoLuc luciferase)结合时,其生物发光发射出现红移。这些腔肠素可以进行调节,使生物发光发射从天然系统中的蓝光发生偏移。特别是,在C8位置将芳基部分直接连接到呋嘧嗪的咪唑并吡嗪酮核心上,可在保持合理光输出的同时实现显著的红移。此外,对C6芳基部分的修饰提供了额外的红移,通过结合最有前景的修饰,我们报告了一种与纳米荧光素酶结合时最大发射波长接近600 nm的腔肠素。最后,我们表明这种新的生物发光系统能够有效地与远红光荧光团进行生物发光共振能量转移(BRET)。我们预计纳米荧光素酶底物设计的这些新原理将影响那些依赖于将发射颜色转移到红色的应用,尤其是在体内生物发光成像方面。