Suppr超能文献

在加利福尼亚、佛罗里达和纽约的州住院患者数据库中,医疗补助保险作为主要支付方可预测全髋关节置换术后的死亡率增加。

Medicaid insurance as primary payer predicts increased mortality after total hip replacement in the state inpatient databases of California, Florida and New York.

机构信息

New York Presbyterian Hospital- Weill Cornell Medicine, Department of Anesthesiology, 525 East 68th Street, Box 124, New York, NY 10065, USA.

Weill Cornell Medicine Center for Perioperative Outcomes, 428 East 72nd St., Ste 800A, New York, NY 10021, USA.

出版信息

J Clin Anesth. 2017 Dec;43:24-32. doi: 10.1016/j.jclinane.2017.09.008. Epub 2017 Sep 30.

Abstract

STUDY OBJECTIVE

To confirm the relationship between primary payer status as a predictor of increased perioperative risks and post-operative outcomes after total hip replacements.

DESIGN

Retrospective cohort study.

SETTING

Administrative database study using 2007-2011 data from California, Florida, and New York from the State Inpatient Databases (SID), Healthcare Cost and Utilization Project, Agency for Healthcare Research and Quality.

PATIENTS

295,572 patients age≥18years old who underwent total hip replacement with non-missing insurance data were collected, using International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) diagnoses and procedures code (ICD-9-CM code 81.51).

INTERVENTIONS

Patients underwent total hip replacement.

MEASUREMENTS

Patients were cohorted by insurance type as either Medicare, Medicaid, Uninsured, Other, and Private Insurance. Demographic characteristics and comorbidities were compared. Unadjusted rates of in-hospital mortality, postoperative complications, LOS, 30-day, and 90-day readmission status were compared. Adjusted odds ratios were calculated for our outcomes using multivariate linear and logistic regression models fitted to our data.

MAIN RESULTS

Medicaid patients incurred a 125% increase in the odds of in-hospital mortality compared to those with Private Insurance (OR 2.25, 99% CI 1.01-5.01). Medicaid payer status was associated with the highest statistically significant adjusted odds of mortality, any complication (OR, 1.26), cardiovascular complications (OR, 1.37), and infectious complications (OR, 1.66) when compared with Private Insurance. Medicaid patients had the highest statistically significant adjusted odds of 30-day (OR, 1.63) and 90-day readmission (OR, 1.58) and the longest adjusted LOS.

CONCLUSIONS

We found higher unadjusted rates and risk adjusted odds ratios of postoperative mortality, morbidity, LOS, and readmissions for patients with Medicaid insurance as compared to patients with Private Insurance. Our study shows that primary payer status serves as a predictor of perioperative risks and that primary payer status should be viewed as a peri-operative risk factor.

摘要

研究目的

确认主要支付方身份(作为预测全髋关节置换术围手术期风险和术后结局的指标)与围手术期风险和术后结局之间的关系。

设计

回顾性队列研究。

设置

使用来自加利福尼亚州、佛罗里达州和纽约州的 2007 年至 2011 年期间的州住院患者数据库(SID)、医疗保健成本和利用项目、医疗保健研究和质量局的行政数据库研究数据。

患者

收集了年龄≥18 岁且无缺失保险数据的 295572 例接受全髋关节置换术的患者,使用国际疾病分类,第 9 版,临床修正(ICD-9-CM)诊断和程序代码(ICD-9-CM 代码 81.51)。

干预措施

患者接受全髋关节置换术。

测量

根据保险类型将患者分组为医疗保险、医疗补助、无保险、其他和私人保险。比较人口统计学特征和合并症。比较住院死亡率、术后并发症、住院时间(LOS)、30 天和 90 天再入院率。使用多元线性和逻辑回归模型对我们的数据进行拟合,计算我们结果的调整后比值比。

主要结果

与私人保险相比,医疗补助患者的院内死亡率调整后比值比增加了 125%(OR 2.25,99%CI 1.01-5.01)。与私人保险相比,医疗补助支付者状态与最高统计学显著调整后死亡率、任何并发症(OR,1.26)、心血管并发症(OR,1.37)和感染性并发症(OR,1.66)的调整后比值比相关。与私人保险相比,医疗补助患者 30 天(OR,1.63)和 90 天再入院(OR,1.58)和调整后 LOS 的调整后比值比最高。

结论

与私人保险相比,我们发现医疗补助保险患者的术后死亡率、发病率、LOS 和再入院率较高,风险调整后比值比也较高。我们的研究表明,主要支付方身份是围手术期风险的预测指标,主要支付方身份应被视为围手术期风险因素。

相似文献

5
Primary payer status affects mortality for major surgical operations.主要支付人身份影响重大手术的死亡率。
Ann Surg. 2010 Sep;252(3):544-50; discussion 550-1. doi: 10.1097/SLA.0b013e3181e8fd75.

引用本文的文献

本文引用的文献

10
Perspectives of Orthopedic Surgeons on Racial/Ethnic Disparities in Care.骨科医生对医疗保健中种族/民族差异的看法。
J Racial Ethn Health Disparities. 2017 Aug;4(4):758-762. doi: 10.1007/s40615-016-0279-z. Epub 2016 Aug 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验