Suppr超能文献

永无止境的道路:改进、调整和完善基于需求的模型以估计澳大利亚两个州未来的全科医生需求。

The never ending road: improving, adapting and refining a needs-based model to estimate future general practitioner requirements in two Australian states.

作者信息

Laurence Caroline O, Heywood Troy, Bell Janice, Atkinson Kaye, Karnon Jonathan

机构信息

School of Public Health, The University of Adelaide, Adelaide, South Australia, Australia.

Western Australian General Practice Education and Training, Perth, Western Australia, Australia.

出版信息

Fam Pract. 2018 Mar 27;35(2):193-198. doi: 10.1093/fampra/cmx087.

Abstract

BACKGROUND

Health workforce planning models have been developed to estimate the future health workforce requirements for a population whom they serve and have been used to inform policy decisions.

OBJECTIVES

To adapt and further develop a need-based GP workforce simulation model to incorporate current and estimated geographic distribution of patients and GPs.

METHODS

A need-based simulation model that estimates the supply of GPs and levels of services required in South Australia (SA) was adapted and applied to the Western Australian (WA) workforce. The main outcome measure was the differences in the number of full-time equivalent (FTE) GPs supplied and required from 2013 to 2033.

RESULTS

The base scenario estimated a shortage of GPs in WA from 2019 onwards with a shortage of 493 FTE GPs in 2033, while for SA, estimates showed an oversupply over the projection period. The WA urban and rural models estimated an urban shortage of GPs over this period. A reduced international medical graduate recruitment scenario resulted in estimated shortfalls of GPs by 2033 for WA and SA. The WA-specific scenarios of lower population projections and registrar work value resulted in a reduced shortage of FTE GPs in 2033, while unfilled training places increased the shortfall of FTE GPs in 2033.

CONCLUSIONS

The simulation model incorporates contextual differences to its structure that allows within and cross jurisdictional comparisons of workforce estimations. It also provides greater insights into the drivers of supply and demand and the impact of changes in workforce policy, promoting more informed decision-making.

摘要

背景

已开发出卫生人力规划模型,以估计其服务人群未来的卫生人力需求,并用于为政策决策提供依据。

目的

调整并进一步开发基于需求的全科医生人力模拟模型,纳入患者和全科医生当前及预计的地理分布情况。

方法

调整了一个基于需求的模拟模型,该模型可估计南澳大利亚州(SA)全科医生的供应情况和所需服务水平,并将其应用于西澳大利亚州(WA)的卫生人力情况。主要结果指标是2013年至2033年全职等效(FTE)全科医生的供应数量与需求数量之间的差异。

结果

基础情景估计,从2019年起西澳大利亚州将出现全科医生短缺,到2033年将短缺493个FTE全科医生,而南澳大利亚州在预测期内预计供应过剩。西澳大利亚州城市和农村模型估计在此期间城市将出现全科医生短缺。国际医学毕业生招聘减少的情景导致到2033年西澳大利亚州和南澳大利亚州预计出现全科医生短缺。西澳大利亚州人口预测较低和注册医生工作价值较低的特定情景导致2033年FTE全科医生短缺情况有所减少,而未填补的培训名额增加了2033年FTE全科医生的短缺情况。

结论

该模拟模型在其结构中纳入了背景差异,从而能够在管辖区内和跨辖区进行卫生人力估计的比较。它还能更深入地了解供需驱动因素以及卫生人力政策变化的影响,促进更明智的决策制定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验