文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

编辑亮点:氯贝丁酸酯通过依赖 PPARα 的方式增加胆汁酸的胆肠排泄从而降低雄性小鼠肝脏中的胆汁酸。

Editor's Highlight: Clofibrate Decreases Bile Acids in Livers of Male Mice by Increasing Biliary Bile Acid Excretion in a PPARα-Dependent Manner.

机构信息

School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.

Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160.

出版信息

Toxicol Sci. 2017 Dec 1;160(2):351-360. doi: 10.1093/toxsci/kfx191.


DOI:10.1093/toxsci/kfx191
PMID:28973556
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5837458/
Abstract

Fibrates and their receptor, namely peroxisome proliferator-activated receptor α (PPARα), have been reported to regulate bile acid (BA) synthesis and transport. However, the effect of fibrate treatment and PPARα activation on BA homeostasis remains controversial. In this study, both wild-type (WT) and PPARα-null male mice were treated with clofibrate (CLOF) for 4 days to evaluate the effects of short-term PPARα activation on BA homeostasis. Although a decrease in total BAs (ΣBAs) was observed in livers of CLOF-treated WT mice, it was not observed in PPARα-null mice. CLOF-mediated decrease in ΣBAs in the liver was not likely due to the reduction in BA synthesis or BA uptake, as evidenced by an increase in the BA synthetic enzyme (Cyp7a1) and 2 BA uptake transporters (Na (+)-taurocholate cotransporting polypeptide [Ntcp] and organic anion transporting polypeptide [Oatp]1b2). Instead, the decrease in liver BAs by CLOF is largely a result of increased biliary excretion of BAs, which was associated with a significant induction of the canalicular efflux transporter (bile salt export pump [Bsep]) in the liver. The PPARα-mediated increase in Cyp7a1 in CLOF-treated WT mice was not due to farnesoid X receptor (Fxr)-small heterodimer partner (Shp) signaling in the liver, but due to suppression of Fxr- fibroblast growth factor15 signaling in the ileum. Additionally, CLOF also suppressed intestinal BA transporters (apical sodium-dependent bile acid transporter and organic solute transporterβ) and cholesterol efflux transporters (Abcg5 and Abcg8) in a PPARα-dependent manner. In summary, this study provides the first comprehensive analysis on the effect of a short-term CLOF treatment on BA homeostasis, and revealed an essential role of PPARα in regulating BA synthesis, transport and signaling.

摘要

贝特类药物及其受体,即过氧化物酶体增殖物激活受体α(PPARα),已被报道可调节胆汁酸(BA)的合成和转运。然而,贝特类药物治疗和 PPARα 激活对 BA 动态平衡的影响仍存在争议。在这项研究中,我们用氯贝特(CLOF)处理野生型(WT)和 PPARα 敲除雄性小鼠 4 天,以评估短期 PPARα 激活对 BA 动态平衡的影响。尽管 CLOF 处理的 WT 小鼠肝脏中的总胆汁酸(ΣBAs)减少,但在 PPARα 敲除小鼠中没有观察到。CLOF 介导的 WT 小鼠肝脏中 ΣBAs 的减少不太可能是由于 BA 合成或 BA 摄取减少所致,这是因为 BA 合成酶(Cyp7a1)和 2 种 BA 摄取转运体(Na(+)-牛磺胆酸钠共转运多肽[Ntcp]和有机阴离子转运多肽[Oatp]1b2)增加。相反,CLOF 引起的肝脏 BAs 减少主要是由于胆汁中 BAs 的排泄增加所致,这与肝脏中胆汁盐输出泵(Bsep)的显著诱导有关。CLOF 处理的 WT 小鼠中 PPARα 介导的 Cyp7a1 增加不是由于肝脏中的法尼醇 X 受体(Fxr)-小异二聚体伴侣(Shp)信号,而是由于回肠中的 Fxr-成纤维细胞生长因子 15 信号受到抑制。此外,CLOF 还以 PPARα 依赖的方式抑制肠道 BA 转运体(顶端钠依赖性胆汁酸转运体和有机溶质转运体β)和胆固醇外排转运体(Abcg5 和 Abcg8)。总之,本研究首次全面分析了短期 CLOF 处理对 BA 动态平衡的影响,揭示了 PPARα 在调节 BA 合成、转运和信号中的重要作用。

相似文献

[1]
Editor's Highlight: Clofibrate Decreases Bile Acids in Livers of Male Mice by Increasing Biliary Bile Acid Excretion in a PPARα-Dependent Manner.

Toxicol Sci. 2017-12-1

[2]
Activation of PPARα decreases bile acids in livers of female mice while maintaining bile flow and biliary bile acid excretion.

Toxicol Appl Pharmacol. 2018-1-1

[3]
Atorvastatin induces bile acid-synthetic enzyme Cyp7a1 by suppressing FXR signaling in both liver and intestine in mice.

J Lipid Res. 2014-12

[4]
Peroxisome proliferator-activated receptor alpha (PPARalpha)-mediated regulation of multidrug resistance 2 (Mdr2) expression and function in mice.

Biochem J. 2003-2-1

[5]
Individual bile acids have differential effects on bile acid signaling in mice.

Toxicol Appl Pharmacol. 2015-1-9

[6]
Organic anion-transporting polypeptide 1a4 (Oatp1a4) is important for secondary bile acid metabolism.

Biochem Pharmacol. 2013-6-6

[7]
Alteration of Bile Acid and Cholesterol Biosynthesis and Transport by Perfluorononanoic Acid (PFNA) in Mice.

Toxicol Sci. 2018-3-1

[8]
Critical role of PPAR-alpha in perfluorooctanoic acid- and perfluorodecanoic acid-induced downregulation of Oatp uptake transporters in mouse livers.

Toxicol Sci. 2008-11

[9]
Activation of Constitutive Androstane Receptor (CAR) in Mice Results in Maintained Biliary Excretion of Bile Acids Despite a Marked Decrease of Bile Acids in Liver.

Toxicol Sci. 2016-6

[10]
The influences of cholecystectomy on the circadian rhythms of bile acids as well as the enterohepatic transporters and enzymes systems in mice.

Chronobiol Int. 2018-5

引用本文的文献

[1]
Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets.

Signal Transduct Target Ther. 2024-4-26

[2]
Distinct bile acid alterations in response to a single administration of PFOA and PFDA in mice.

Toxicology. 2024-2

[3]
The Farnesoid X Receptor as a Master Regulator of Hepatotoxicity.

Int J Mol Sci. 2022-11-12

[4]
Reduced peroxisome proliferator-activated receptor-α and bile acid nuclear receptor NR1H4/FXR may affect the hepatic immune microenvironment of biliary atresia.

Front Immunol. 2022

[5]
PPARα: A potential therapeutic target of cholestasis.

Front Pharmacol. 2022-7-18

[6]
Hepatic Expression of the Na-Taurocholate Cotransporting Polypeptide Is Independent from Genetic Variation.

Int J Mol Sci. 2022-7-5

[7]
Reversal of NAFLD After VSG Is Independent of Weight-Loss but RYGB Offers More Efficacy When Maintained on a High-Fat Diet.

Obes Surg. 2022-6

[8]
Bile acid and receptors: biology and drug discovery for nonalcoholic fatty liver disease.

Acta Pharmacol Sin. 2022-5

[9]
Mice with a deficiency in Peroxisomal Membrane Protein 4 (PXMP4) display mild changes in hepatic lipid metabolism.

Sci Rep. 2022-2-15

[10]
Effects of ablation and activation of Nrf2 on bile acid homeostasis in male mice.

Toxicol Appl Pharmacol. 2020-9-15

本文引用的文献

[1]
Clofibrate in Neonatal Hyperbilirubinemia.

Indian J Pediatr. 2017-10

[2]
Fibrates and cholestasis.

Hepatology. 2015-8

[3]
PPARα-UGT axis activation represses intestinal FXR-FGF15 feedback signalling and exacerbates experimental colitis.

Nat Commun. 2014-9-3

[4]
Selective peroxisome proliferator-activated receptor α modulators (SPPARMα): the next generation of peroxisome proliferator-activated receptor α-agonists.

Cardiovasc Diabetol. 2013-5-31

[5]
Anticholestatic effects of bezafibrate in patients with primary biliary cirrhosis treated with ursodeoxycholic acid.

Hepatology. 2013-4-5

[6]
Coordinated regulation of hepatic phase I and II drug-metabolizing genes and transporters using AhR-, CAR-, PXR-, PPARα-, and Nrf2-null mice.

Drug Metab Dispos. 2012-4-11

[7]
Transcription factor-mediated regulation of carboxylesterase enzymes in livers of mice.

Drug Metab Dispos. 2012-3-19

[8]
Peroxisome proliferator-activated receptor alpha target genes.

PPAR Res. 2010-9-26

[9]
Effects of feeding bile acids and a bile acid sequestrant on hepatic bile acid composition in mice.

J Lipid Res. 2010-7-29

[10]
Sumoylated PPARalpha mediates sex-specific gene repression and protects the liver from estrogen-induced toxicity in mice.

J Clin Invest. 2009-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索