Botanical Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany.
Cluster of Excellence on Plant Sciences, University of Cologne, 50674 Cologne, Germany.
Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):E9403-E9412. doi: 10.1073/pnas.1710455114. Epub 2017 Oct 2.
Most land plants live in association with arbuscular mycorrhizal (AM) fungi and rely on this symbiosis to scavenge phosphorus (P) from soil. The ability to establish this partnership has been lost in some plant lineages like the Brassicaceae, which raises the question of what alternative nutrition strategies such plants have to grow in P-impoverished soils. To understand the contribution of plant-microbiota interactions, we studied the root-associated fungal microbiome of (Brassicaceae) with the hypothesis that some of its components can promote plant P acquisition. Using amplicon sequencing of the fungal internal transcribed spacer 2, we studied the root and rhizosphere fungal communities of growing under natural and controlled conditions including low-P soils and identified a set of 15 fungal taxa consistently detected in its roots. This cohort included a Helotiales taxon exhibiting high abundance in roots of wild growing in an extremely P-limited soil. Consequently, we isolated and subsequently reintroduced a specimen from this taxon into its native P-poor soil in which it improved plant growth and P uptake. The fungus exhibited mycorrhiza-like traits including colonization of the root endosphere and P transfer to the plant. Genome analysis revealed a link between its endophytic lifestyle and the expansion of its repertoire of carbohydrate-active enzymes. We report the discovery of a plant-fungus interaction facilitating the growth of a nonmycorrhizal plant under native P-limited conditions, thus uncovering a previously underestimated role of root fungal microbiota in P cycling.
大多数陆地植物与丛枝菌根(AM)真菌共生,并依赖这种共生关系从土壤中获取磷(P)。一些植物谱系,如十字花科,已经失去了建立这种伙伴关系的能力,这就提出了一个问题,即在 P 贫瘠的土壤中,这些植物有什么替代营养策略来生长。为了了解植物-微生物群相互作用的贡献,我们研究了 (十字花科)的根相关真菌微生物组,假设其某些成分可以促进植物对 P 的获取。我们通过真菌内部转录间隔区 2 的扩增子测序,研究了在自然和控制条件下生长的 的根和根际真菌群落,包括低 P 土壤,并鉴定了一组在其根中始终存在的 15 种真菌类群。这个队列包括一个在极度 P 限制土壤中生长的野生 根中丰度很高的 Helotiales 分类群。因此,我们从这个分类群中分离并随后将一个标本重新引入到其原生 P 贫乏的土壤中,在那里它改善了植物的生长和 P 的吸收。该真菌表现出类似菌根的特征,包括根内皮层的定殖和 P 向植物的转移。基因组分析揭示了其内生生活方式与其碳水化合物活性酶谱扩展之间的联系。我们报告了一种植物-真菌相互作用的发现,该相互作用促进了一种非菌根植物在原生 P 限制条件下的生长,从而揭示了根真菌微生物群在 P 循环中以前被低估的作用。