State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
Department of Microbiology and Immunobiology and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
mBio. 2017 Oct 3;8(5):e01581-17. doi: 10.1128/mBio.01581-17.
Transposon insertion sequencing (TIS) is a powerful high-throughput genetic technique that is transforming functional genomics in prokaryotes, because it enables genome-wide mapping of the determinants of fitness. However, current approaches for analyzing TIS data assume that selective pressures are constant over time and thus do not yield information regarding changes in the genetic requirements for growth in dynamic environments (e.g., during infection). Here, we describe structured analysis of TIS data collected as a time series, termed pattern analysis of conditional essentiality (PACE). From a temporal series of TIS data, PACE derives a quantitative assessment of each mutant's fitness over the course of an experiment and identifies mutants with related fitness profiles. In so doing, PACE circumvents major limitations of existing methodologies, specifically the need for artificial effect size thresholds and enumeration of bacterial population expansion. We used PACE to analyze TIS samples of (a fish pathogen) collected over a 2-week infection period from a natural host (the flatfish turbot). PACE uncovered more genes that affect 's fitness than were detected using a cutoff at a terminal sampling point, and it identified subpopulations of mutants with distinct fitness profiles, one of which informed the design of new live vaccine candidates. Overall, PACE enables efficient mining of time series TIS data and enhances the power and sensitivity of TIS-based analyses. Transposon insertion sequencing (TIS) enables genome-wide mapping of the genetic determinants of fitness, typically based on observations at a single sampling point. Here, we move beyond analysis of endpoint TIS data to create a framework for analysis of time series TIS data, termed pattern analysis of conditional essentiality (PACE). We applied PACE to identify genes that contribute to colonization of a natural host by the fish pathogen PACE uncovered more genes that affect 's fitness than were detected using a terminal sampling point, and its clustering of mutants with related fitness profiles informed design of new live vaccine candidates. PACE yields insights into patterns of fitness dynamics and circumvents major limitations of existing methodologies. Finally, the PACE method should be applicable to additional "omic" time series data, including screens based on clustered regularly interspaced short palindromic repeats with Cas9 (CRISPR/Cas9).
转座子插入测序(TIS)是一种强大的高通量遗传技术,正在改变原核生物的功能基因组学,因为它能够实现适应性的全基因组图谱。然而,目前用于分析 TIS 数据的方法假设选择压力随时间保持不变,因此无法提供有关动态环境(例如感染期间)中生长的遗传要求变化的信息。在这里,我们描述了作为时间序列收集的 TIS 数据的结构化分析,称为条件必需性的模式分析(PACE)。从 TIS 数据的时间序列中,PACE 得出了每个突变体在实验过程中的适应性的定量评估,并确定了具有相关适应性谱的突变体。这样,PACE 规避了现有方法学的主要局限性,特别是需要人为的效应大小阈值和细菌种群扩张的枚举。我们使用 PACE 分析了在从天然宿主(比目鱼)感染两周期间采集的鱼类病原体 的 TIS 样本。PACE 发现了比在终末采样点使用截止值检测到的更多影响 's 适应性的基因,并且它确定了具有不同适应性谱的突变体的亚群,其中一个亚群为新的活疫苗候选物的设计提供了信息。总体而言,PACE 能够有效地挖掘时间序列 TIS 数据,并增强基于 TIS 的分析的功效和灵敏度。转座子插入测序(TIS)能够实现适应性的全基因组图谱,通常基于单个采样点的观察。在这里,我们超越了终点 TIS 数据的分析,创建了一个用于分析时间序列 TIS 数据的框架,称为条件必需性的模式分析(PACE)。我们应用 PACE 来鉴定有助于鱼类病原体 感染天然宿主的基因。PACE 发现了比在终末采样点使用截止值检测到的更多影响 's 适应性的基因,并且它对具有相关适应性谱的突变体的聚类为新的活疫苗候选物的设计提供了信息。PACE 提供了对适应性动态模式的深入了解,并规避了现有方法学的主要局限性。最后,PACE 方法应该适用于其他“组学”时间序列数据,包括基于 CRISPR/Cas9 的聚类规则间隔短回文重复序列(CRISPR/Cas9)的筛选。