Department of Electrical and Computer Engineering, University of Nebraska-Lincoln , Lincoln, Nebraska 68588-0511, United States.
School of Mechanical Engineering, Beijing Institute of Technology , Beijing, 100081, China.
ACS Appl Mater Interfaces. 2017 Oct 25;9(42):37340-37349. doi: 10.1021/acsami.7b12087. Epub 2017 Oct 12.
Traditional ceramic-based, high-temperature electrode materials (e.g., lanthanum chromate) are severely limited due to their conditional electrical conductivity and poor stability under harsh circumstances. Advanced composite structures based on vertically aligned carbon nanotubes (VACNTs) and high-temperature ceramics are expected to address this grand challenge, in which ceramic serves as a shielding layer protecting the VACNTs from the oxidation and erosive environment, while the VACNTs work as a conductor. However, it is still a great challenge to fabricate VACNT/ceramic composite structures due to the limited diffusion of ceramics inside the VACNT arrays. In this work, we report on the controllable fabrication of infiltrated (and noninfiltrated) VACNT/silicon composite structures via thermal chemical vapor deposition (CVD) [and laser-assisted CVD]. In laser-assisted CVD, low-crystalline silicon (Si) was quickly deposited at the VACNT subsurfaces/surfaces followed by the formation of high-crystalline Si layers, thus resulting in noninfiltrated composite structures. Unlike laser-assisted CVD, thermal CVD activated the precursors inside and outside the VACNTs simultaneously, which realized uniform infiltrated VACNT/Si composite structures. The growth mechanisms for infiltrated and noninfiltrated VACNT/ceramic composites, which we attributed to the different temperature distributions and gas diffusion mechanism in VACNTs, were investigated. More importantly, the as-farbicated composite structures exhibited excellent multifunctional properties, such as excellent antioxidative ability (up to 1100 °C), high thermal stability (up to 1400 °C), good high velocity hot gas erosion resistance, and good electrical conductivity (∼8.95 Sm at 823 K). The work presented here brings a simple, new approach to the fabrication of advanced composite structures for hot electrode applications.
传统的基于陶瓷的高温电极材料(例如铬酸镧)由于其条件电导率和在恶劣环境下的较差稳定性而受到严重限制。基于垂直排列的碳纳米管(VACNTs)和高温陶瓷的先进复合材料结构有望解决这一重大挑战,其中陶瓷作为屏蔽层保护 VACNTs 免受氧化和侵蚀环境的影响,而 VACNTs 则作为导体。然而,由于陶瓷在 VACNT 阵列内部的扩散有限,因此制造 VACNT/陶瓷复合材料结构仍然是一个巨大的挑战。在这项工作中,我们通过热化学气相沉积(CVD)[和激光辅助 CVD]报告了可控制造浸渍(和未浸渍)的 VACNT/硅复合材料结构。在激光辅助 CVD 中,低晶态硅(Si)在 VACNT 亚表面/表面快速沉积,然后形成高晶态 Si 层,从而形成未浸渍的复合材料结构。与激光辅助 CVD 不同,热 CVD 同时激活了 VACNTs 内外的前体,从而实现了均匀浸渍的 VACNT/Si 复合材料结构。浸渍和未浸渍的 VACNT/陶瓷复合材料的生长机制,我们归因于 VACNTs 中不同的温度分布和气体扩散机制,进行了研究。更重要的是,所制造的复合材料结构表现出优异的多功能特性,例如出色的抗氧化能力(高达 1100°C)、高热稳定性(高达 1400°C)、良好的高速热燃气侵蚀阻力和良好的导电性(在 823 K 时约为 8.95 Sm)。这里介绍的工作为制造用于热电极的先进复合材料结构带来了一种简单、新颖的方法。