Pouyandeh Sima, Iubini Stefano, Jurinovich Sandro, Omar Yasser, Mennucci Benedetta, Piazza Francesco
Instituto de Telecomunicações, Physics of Information and Quantum Technologies Group, Portugal. Instituto Superior Técnico, Universidade de Lisboa, Portugal. Centre de Biophysique Moléculaire, (CBM), CNRS UPR 4301, Rue C. Sadron, 45071, Orléans, France.
Phys Biol. 2017 Nov 16;14(6):066001. doi: 10.1088/1478-3975/aa90ea.
In this paper, we work out a parameterization of environmental noise within the Haken-Strobl-Reinenker (HSR) model for the PE545 light-harvesting complex, based on atomic-level quantum mechanics/molecular mechanics (QM/MM) simulations. We use this approach to investigate the role of various auto- and cross-correlations in the HSR noise tensor, confirming that site-energy autocorrelations (pure dephasing) terms dominate the noise-induced exciton mobility enhancement, followed by site energy-coupling cross-correlations for specific triplets of pigments. Interestingly, several cross-correlations of the latter kind, together with coupling-coupling cross-correlations, display clear low-frequency signatures in their spectral densities in the 30-70 [Formula: see text] region. These slow components lie at the limits of validity of the HSR approach, which requires that environmental fluctuations be faster than typical exciton transfer time scales. We show that a simple coarse-grained elastic-network-model (ENM) analysis of the PE545 protein naturally spotlights collective normal modes in this frequency range that represent specific concerted motions of the subnetwork of cysteines covalenty linked to the pigments. This analysis strongly suggests that protein scaffolds in light-harvesting complexes are able to express specific collective, low-frequency normal modes providing a fold-rooted blueprint of exciton transport pathways. We speculate that ENM-based mixed quantum classical methods, such as Ehrenfest dynamics, might be promising tools to disentangle the fundamental designing principles of these dynamical processes in natural and artificial light-harvesting structures.
在本文中,我们基于原子水平的量子力学/分子力学(QM/MM)模拟,得出了用于PE545光捕获复合体的哈肯 - 施特罗布尔 - 赖嫩克尔(HSR)模型中环境噪声的参数化。我们使用这种方法来研究HSR噪声张量中各种自相关和交叉相关的作用,证实位点能量自相关(纯退相)项主导了噪声诱导的激子迁移率增强,其次是特定色素三重态的位点能量耦合交叉相关。有趣的是,后一种交叉相关中的几个,连同耦合 - 耦合交叉相关,在其30 - 70 [公式:见正文]区域的谱密度中显示出明显的低频特征。这些慢成分处于HSR方法有效性的极限,该方法要求环境波动比典型的激子转移时间尺度更快。我们表明,对PE545蛋白进行简单的粗粒度弹性网络模型(ENM)分析自然会突出该频率范围内的集体正常模式,这些模式代表与色素共价连接的半胱氨酸子网络的特定协同运动。该分析强烈表明,光捕获复合体中的蛋白质支架能够表达特定的集体低频正常模式,为激子传输途径提供基于折叠的蓝图。我们推测,基于ENM的混合量子经典方法,如埃伦费斯特动力学,可能是解开自然和人工光捕获结构中这些动力学过程基本设计原理的有前途的工具。