Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore , 10 Kent Ridge Crescent, 119260 Singapore.
Environ Sci Technol. 2017 Nov 7;51(21):12998-13007. doi: 10.1021/acs.est.7b03308. Epub 2017 Oct 17.
Exploring efficient and low-cost solid sorbents is essential for carbon capture and storage. Herein, a novel class of high-performance CO adsorbent (rGO@MgO/C) is engineered based on the controllable integration of reduced graphene oxide (rGO), amorphous carbon, and MgO nanocrystallites. The optimized rGO@MgO/C nanocomposite exhibits remarkable CO capture capacity (up to 31.5 wt % at 27 °C, 1 bar CO, and 22.5 wt % under the simulated flue gas), fast sorption rate, and strong process durability. The enhanced capture capability of CO is the best among all of the MgO-based sorbents reported so far. The high performance of rGO@MgO/C nanocomposite can be ascribed to the hierarchical architecture and special physicochemical features, including the sheet-on-sheet sandwich-like structure, ultrathin nanosheets with abundant nanopores, large surface area, and highly dispersed ultrafine MgO nanocrystallites (ca. 3 nm in size), together with the rGO sheets and in situ generated amorphous carbon that serve as a dual carbon support and protectant system with which to prevent MgO nanocrystallites from agglomeration. In addition, the CO-uptake capacity at intermediate temperature (e.g., 350 °C) can be further improved threefold through alkali metal salt promotion treatment. This work provides a facile and effective strategy with which to engineer advanced graphene-based functional nanocomposites with rationally designed compositions and architectures for potential applications in the field of gas storage and separation.
探索高效且低成本的固体吸附剂对于碳捕获和封存至关重要。在此,基于可控整合还原氧化石墨烯(rGO)、无定形碳和 MgO 纳米晶,设计了一类新型高性能 CO 吸附剂(rGO@MgO/C)。优化后的 rGO@MgO/C 纳米复合材料表现出显著的 CO 捕获能力(在 27°C、1 巴 CO 和模拟烟道气下分别高达 31.5wt%和 22.5wt%)、快速吸附速率和强过程耐久性。CO 的增强捕获能力是迄今为止所有报道的基于 MgO 的吸附剂中最好的。rGO@MgO/C 纳米复合材料的高性能可归因于其分层结构和特殊的物理化学特性,包括片层对片层的夹层状结构、具有丰富纳米孔的超薄纳米片、大表面积和高度分散的超细 MgO 纳米晶(约 3nm 大小),以及 rGO 片和原位生成的无定形碳,它们作为双碳支撑和保护体系,防止 MgO 纳米晶团聚。此外,通过碱金属盐促进处理,可将中间温度(例如 350°C)下的 CO 吸收容量进一步提高三倍。这项工作为工程设计提供了一种简便有效的策略,可用于设计具有合理组成和结构的先进石墨烯基功能纳米复合材料,从而在气体储存和分离领域具有潜在应用。