Xu Wei, Ma Jin, Greenwood Celia M T, Paterson Andrew D, Bull Shelley B
Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada, M5G 2M9.
Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada, M5T 3M7.
Methods Mol Biol. 2017;1666:343-373. doi: 10.1007/978-1-4939-7274-6_17.
Genetic linkage analysis aims to detect chromosomal regions containing genetic variants that influence risk of specific inherited diseases. The presence of linkage is indicated when a disease or trait cosegregates through the families with genetic markers at a particular region of the genome. Two main types of genetic linkage analysis are in common use, namely model-based linkage analysis and model-free linkage analysis. In this chapter, we focus solely on the latter type and specifically on binary traits or phenotypes, such as the presence or absence of a specific disease. Model-free linkage analysis is based on allele-sharing, where patterns of genetic similarity among affected relatives are compared to chance expectations. Because the model-free methods do not require the specification of the inheritance parameters of a genetic model, they are preferred by many researchers at early stages in the study of a complex disease. We introduce the history of model-free linkage analysis in Subheading 1. Table 1 describes a standard model-free linkage analysis workflow. We describe three popular model-free linkage analysis methods, the nonparametric linkage (NPL) statistic, the affected sib-pair (ASP) likelihood ratio test, and a likelihood approach for pedigrees. The theory behind each linkage test is described in this section together with a simple example of the relevant calculations. Table 4 provides a summary of popular genetic analysis software packages that implement model-free linkage models. In Subheading 2, we work through the methods on a rich example providing sample software code and output. Subheading 3 contains notes with additional details on various topics that may need further consideration during analysis.
遗传连锁分析旨在检测包含影响特定遗传性疾病风险的遗传变异的染色体区域。当一种疾病或性状与基因组特定区域的遗传标记在家族中共同分离时,表明存在连锁关系。常用的遗传连锁分析主要有两种类型,即基于模型的连锁分析和无模型连锁分析。在本章中,我们仅关注后一种类型,特别是二元性状或表型,例如特定疾病的存在与否。无模型连锁分析基于等位基因共享,即比较患病亲属之间的遗传相似模式与随机预期。由于无模型方法不需要指定遗传模型的遗传参数,因此在复杂疾病研究的早期阶段受到许多研究人员的青睐。我们在小标题1中介绍无模型连锁分析的历史。表1描述了标准的无模型连锁分析工作流程。我们描述三种流行的无模型连锁分析方法,非参数连锁(NPL)统计量、患病同胞对(ASP)似然比检验以及家系的似然方法。本节将介绍每个连锁检验背后的理论以及相关计算的简单示例。表4总结了实现无模型连锁模型的流行遗传分析软件包。在小标题2中,我们通过一个丰富的示例来讲解这些方法,并提供示例软件代码和输出。小标题3包含关于分析过程中可能需要进一步考虑的各种主题的详细注释。