Suppr超能文献

利用压缩感知理论实现高强度聚焦超声病灶量化

Toward high-intensity focused ultrasound lesion quantification using compressive sensing theory.

作者信息

Ghasemifard Hadi, Behnam Hamid, Tavakkoli Jahan

机构信息

1 Department of Biomedical Engineering, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran.

2 Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran.

出版信息

Proc Inst Mech Eng H. 2017 Dec;231(12):1152-1164. doi: 10.1177/0954411917735557. Epub 2017 Oct 5.

Abstract

Compressive sensing theory has in recent years been increasingly used in various pattern recognition applications. Compressive sensing theory makes it possible, under certain assumptions, to recover a signal or an image sampled below the Nyquist sampling limit. In this work, a new application of compressive sensing based on the threshold algorithm, in the area of controlling and monitoring of high-intensity focused ultrasound therapy, was investigated. In this work, a new method of high-intensity focused ultrasound lesion detection is presented based on a modified compressive sensing method in combination with the threshold algorithm and the wavelet transforms. In this study, analysis of the suggested method is performed using two sets of data: simulated and experimental ultrasound radio frequency data. The results of processing the data show that the proposed algorithm results in enhancement of the high-intensity focused ultrasound lesion contrast in comparison with the ultrasound B-mode and standard compressive sensing imaging methods. The results of the study show that the modified compressive sensing method could effectively detect thermal lesions in vitro. Comparing the estimated size of the thermal lesion (8.3 mm × 8.4 mm) using the proposed algorithm with the actual size of that from physical examination (10.1 mm × 9 mm) shows that we could detect high-intensity focused ultrasound thermal lesions with the difference of 0.8 mm × 0.5 mm.

摘要

近年来,压缩感知理论在各种模式识别应用中得到了越来越广泛的应用。在某些假设条件下,压缩感知理论使得恢复低于奈奎斯特采样极限采样的信号或图像成为可能。在这项工作中,研究了基于阈值算法的压缩感知在高强度聚焦超声治疗控制与监测领域的一种新应用。在这项工作中,提出了一种基于改进的压缩感知方法并结合阈值算法和小波变换的高强度聚焦超声病灶检测新方法。在本研究中,使用两组数据对所提出的方法进行分析:模拟超声射频数据和实验超声射频数据。数据处理结果表明,与超声B模式和标准压缩感知成像方法相比,所提出的算法能够提高高强度聚焦超声病灶的对比度。研究结果表明,改进的压缩感知方法能够有效地在体外检测热损伤病灶。将使用所提出算法估计的热损伤病灶大小(8.3毫米×8.4毫米)与体格检查实际大小(10.1毫米×9毫米)进行比较,结果表明我们能够检测到高强度聚焦超声热损伤病灶,两者相差0.8毫米×0.5毫米。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验