Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Osipovskogo St. 2a, 04123, Kyiv, Ukraine.
Cell Biol Int. 2019 Sep;43(9):1049-1055. doi: 10.1002/cbin.10880. Epub 2017 Dec 15.
The presence of evolutionarily conserved NOS or NOS-like enzymes in land plants different than those in animals is still unclear, despite their activity has been revealed in cytosol and some organelles. At the same time, the emerging evidence for the importance of L-arginine-dependent pathways of NO synthesis in plant cells is still accumulating. The aim of our study was to reveal physiological effects on growth and differentiation processes, and microtubular cytoskeleton organization of the competitive mammalian NO synthase inhibitor Nω-nitro-L-arginine methylester (L-NAME). Thus, the treatment of Arabidopsis with L-NAME (50-1 mM) caused dose- and time-dependent inhibition of primary roots growth. Moreover, the morphology of primary roots under the influence of L-NAME also underwent changes. L-NAME (>100 µM) induced the formation of novel over-elongated root hairs in shortened elongation zone, while in higher concentrations (500 µM) it caused a slight swelling of epidermal cells in differentiation zone. L-NAME also provoked microtubule reorganization in epidermal cells of different root growth zones. Thus, L-NAME at concentrations of 50-1 mM induced cortical microtubules randomization and/or depolymerization in epidermal cells of the root apex, meristem, transition, elongation, and differentiation zones after 2 h of treatment. Disordered microtubules in trichoblasts could initiate the formation of actively elongating root hairs that reveals longitudinal microtubules ensuring their active growth at 24 h of treatment. Therefore, L-NAME inhibits primary root growth, induces the differentiation processes in roots, reorganizes cortical microtubules in epidermal root cells suggesting the importance of L-arginine-dependent pathways of NO synthesis in plants.
尽管在细胞质和一些细胞器中已经发现了进化上保守的 NOS 或类似 NOS 的酶,但它们在陆地植物中的存在与动物中的不同,这一点仍然不清楚。与此同时,越来越多的证据表明,L-精氨酸依赖的 NO 合成途径在植物细胞中的重要性仍在不断积累。我们的研究目的是揭示生理效应对生长和分化过程以及微管细胞骨架组织的影响,以及哺乳动物竞争型一氧化氮合酶抑制剂 Nω-硝基-L-精氨酸甲酯(L-NAME)。因此,用 L-NAME(50-1 mM)处理拟南芥会导致初级根生长的剂量和时间依赖性抑制。此外,在 L-NAME 的影响下,初级根的形态也发生了变化。L-NAME(>100 μM)诱导缩短伸长区中新的超长根毛的形成,而在较高浓度(500 μM)下,它会导致分化区表皮细胞轻微肿胀。L-NAME 还会引起不同根生长区表皮细胞微管的重排。因此,L-NAME 在 50-1 mM 的浓度下,在处理 2 小时后,会诱导根尖、分生组织、过渡区、伸长区和分化区表皮细胞的皮层微管随机化和/或解聚。在处理 24 小时后,紊乱的微管在根毛原细胞中可以启动活跃伸长的根毛的形成,这表明纵向微管确保了它们的活跃生长。因此,L-NAME 抑制初级根生长,诱导根的分化过程,重组表皮根细胞的皮层微管,表明 L-精氨酸依赖的 NO 合成途径在植物中的重要性。