Department of Chemical Engineering, University of South Carolina , 541 Main St. Horizon I, Columbia, South Carolina 29201, United States.
Environ Sci Technol. 2017 Nov 7;51(21):12918-12924. doi: 10.1021/acs.est.7b02064. Epub 2017 Oct 23.
This study focuses on revealing the interaction of sulfur oxides (SO) and nitrogen oxides (NO) and investigating the application of Fourier transform infrared (FTIR) spectroscopy to quantify SO and NO emissions from gas-phase oxy-combustion systems. The authors aim to contribute to the current state of knowledge by providing speciation data of NO and SO species and it elucidates the influence of nitric oxide (NO) on sulfur trioxide (SO) generation. Detailed kinetic simulations revealed the influence of combustion parameters and the sensitivity analysis confirmed the dominating influence of hydrocarbon fragments on NO reduction. Accompanying experimental analysis exhibited higher reduction of NO to nitrogen (N) comparing to the predictions by the kinetic simulations. Moreover, the presence of NO in the system was observed to influence the SO generation to a variable degree based on the reaction set employed for kinetic simulations. Experimentally, slight decrease in SO concentration was observed in the presence of NO and it can be explained by the radical consumption by NO as SO and NO species share the same radical pool. The oxy-combustion mechanisms available in the literature can be improved further to be able to predict this interaction.
本研究聚焦于揭示硫氧化物(SO)和氮氧化物(NO)的相互作用,并探讨傅里叶变换红外(FTIR)光谱在量化气相氧燃烧系统中 SO 和 NO 排放方面的应用。作者旨在通过提供 NO 和 SO 物种的形态数据,为当前的知识状态做出贡献,并阐明一氧化氮(NO)对三氧化硫(SO)生成的影响。详细的动力学模拟揭示了燃烧参数的影响,敏感性分析证实了烃片段对 NO 还原的主导影响。伴随的实验分析表明,与动力学模拟的预测相比,NO 还原为氮(N)的还原程度更高。此外,根据用于动力学模拟的反应集,观察到系统中存在的 NO 会对 SO 的生成产生不同程度的影响。实验上,在存在 NO 的情况下,SO 浓度略有下降,这可以通过 NO 消耗自由基来解释,因为 SO 和 NO 物种共享相同的自由基池。文献中可用的氧燃烧机制可以进一步改进,以能够预测这种相互作用。