Plant Signal Research Group, Institute of Technology, University of Tartu, Tartu 50411, Estonia
Plant Signal Research Group, Institute of Technology, University of Tartu, Tartu 50411, Estonia.
Plant Physiol. 2018 Jan;176(1):851-864. doi: 10.1104/pp.17.00912. Epub 2017 Oct 6.
Guard cells shrink and close stomatal pores when air humidity decreases (i.e. when the difference between the vapor pressures of leaf and atmosphere [VPD] increases). The role of abscisic acid (ABA) in VPD-induced stomatal closure has been studied using ABA-related mutants that respond to VPD in some studies and not in others. The importance of ABA biosynthesis in guard cells versus vasculature for whole-plant stomatal regulation is unclear as well. Here, we show that Arabidopsis () lines carrying mutations in different steps of ABA biosynthesis as well as pea () and tomato () ABA-deficient mutants had higher stomatal conductance compared with wild-type plants. To characterize the role of ABA production in different cells, we generated transgenic plants where ABA biosynthesis was rescued in guard cells or phloem companion cells of an ABA-deficient mutant. In both cases, the whole-plant stomatal conductance, stunted growth phenotype, and leaf ABA level were restored to wild-type values, pointing to the redundancy of ABA sources and to the effectiveness of leaf ABA transport. All ABA-deficient lines closed their stomata rapidly and extensively in response to high VPD, whereas plants with mutated protein kinase OST1 showed stunted VPD-induced responses. Another strongly ABA-insensitive mutant, defective in the six ABA PYR/RCAR receptors, responded to changes in VPD in both directions strongly and symmetrically, indicating that its VPD-induced closure could be passive hydraulic. We discuss that both the VPD-induced passive hydraulic stomatal closure and the stomatal VPD regulation of ABA-deficient mutants may be conditional on the initial pretreatment stomatal conductance.
当空气湿度降低(即叶片与大气之间的蒸气压差[VPD]增加)时,保卫细胞会收缩并关闭气孔。使用与 ABA 相关的突变体研究了 ABA 在 VPD 诱导的气孔关闭中的作用,在一些研究中这些突变体对 VPD 有反应,而在其他研究中则没有。保卫细胞与维管束中 ABA 生物合成在整个植物气孔调节中的作用也不清楚。在这里,我们表明,拟南芥()携带 ABA 生物合成不同步骤突变的系以及豌豆()和番茄()ABA 缺陷突变体的气孔导度比野生型植物高。为了表征 ABA 产生在不同细胞中的作用,我们生成了转基因植物,其中 ABA 生物合成在 ABA 缺陷突变体的保卫细胞或韧皮部伴胞中得到挽救。在这两种情况下,整株植物的气孔导度、生长受阻表型和叶片 ABA 水平都恢复到野生型值,这表明 ABA 来源的冗余性和叶片 ABA 运输的有效性。所有 ABA 缺陷型系在高 VPD 下迅速且广泛地关闭气孔,而具有突变蛋白激酶 OST1 的植物对 VPD 诱导的反应受到抑制。另一个强烈的 ABA 不敏感突变体,在六个 ABA PYR/RCAR 受体中缺陷,对 VPD 的变化表现出强烈且对称的反应,表明其 VPD 诱导的关闭可能是被动水力的。我们讨论了 VPD 诱导的被动水力气孔关闭和 ABA 缺陷突变体的气孔 VPD 调节可能取决于初始预处理气孔导度。