Singh Pooja, Sinha Rajesh, Tyagi Gaurav, Sharma Naresh Kumar, Saini Neeraj K, Chandolia Amita, Prasad Ashok Kumar, Varma-Basil Mandira, Bose Mridula
Department of Microbiology, V. P. Chest Institute, University of Delhi, Chatra Marg, Delhi, India; Public Health research Institute, New Jersey Medical School - Rutgers, The State University of New Jersey, Newark, NJ, USA.
Department of Microbiology, V. P. Chest Institute, University of Delhi, Chatra Marg, Delhi, India; Department of Biochemistry, V. P. Chest Institute, University of Delhi, Chatra Marg, Delhi, India.
Gene. 2018 Feb 5;642:178-187. doi: 10.1016/j.gene.2017.09.062. Epub 2017 Oct 6.
Lipid metabolism forms the heart and soul of Mycobacterium tuberculosis life cycle. Starting from macrophage invasion at cholesterol rich micro-domains to a sustainable survival for infection by utilizing cholesterol, Mycobacterium displays the nexus of metabolic pathways around host derived lipids. mce4 operon acts as cholesterol import system in M. tuberculosis and here we demonstrate role of mce4A gene of this operon in cholesterol catabolism. Here M. tuberculosis H37Rv overexpressing Rv3499c (mce4A) recombinant was used as a model to decipher the metabolic flux during intake and utilization of host lipids by mycobacteria. We analysed the impact of mce4A expression on carbon shift initiated during cholesterol utilization necessary for long term survival of mycobacterium. Through transcriptional analysis, upregulation in methylcitrate cycle (MCC) and methylmalonyl pathway (MMP) genes was observed in Rv3499c overexpressing recombinants of M. tuberculosis H37Rv. Up-regulation of methylmalonyl pathway associated enzyme encoding genes increased accumulation of virulence associated mycobacterial lipids phthiocerol dimycocerates (PDIM) and sulfolipid (SL1). We demonstrate that MCC and MMP associated enzyme encoding genes are upregulated upon mce4A overexpression and lead to enhanced accumulation of PDIM and SL1 which are responsible for pathogenicity of M. tuberculosis.
脂质代谢构成了结核分枝杆菌生命周期的核心。从在富含胆固醇的微结构域处侵入巨噬细胞,到利用胆固醇实现感染后的持续存活,结核分枝杆菌展示了围绕宿主来源脂质的代谢途径之间的联系。mce4操纵子作为结核分枝杆菌中的胆固醇导入系统,在此我们证明了该操纵子的mce4A基因在胆固醇分解代谢中的作用。在此,将过表达Rv3499c(mce4A)的结核分枝杆菌H37Rv重组体用作模型,以解读分枝杆菌摄取和利用宿主脂质过程中的代谢通量。我们分析了mce4A表达对分枝杆菌长期存活所必需的胆固醇利用过程中引发的碳转移的影响。通过转录分析,在过表达Rv3499c的结核分枝杆菌H37Rv重组体中观察到甲基柠檬酸循环(MCC)和甲基丙二酸途径(MMP)基因上调。甲基丙二酸途径相关酶编码基因的上调增加了与毒力相关的分枝杆菌脂质——结核菌醇二霉菌酸酯(PDIM)和硫脂(SL1)的积累。我们证明,mce4A过表达后,MCC和MMP相关酶编码基因上调,并导致PDIM和SL1的积累增加,而PDIM和SL1是结核分枝杆菌致病性的原因。