Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York-Binghamton, Binghamton, NY 13902, USA.
Lab Chip. 2017 Nov 7;17(22):3817-3825. doi: 10.1039/c7lc00941k.
A microfluidic lab-on-a-chip system that generates its own power is essential for stand-alone, independent, self-sustainable point-of-care diagnostic devices to work in limited-resource and remote regions. Miniaturized biological solar cells (or micro-BSCs) can be the most suitable power source for those lab-on-a-chip applications because the technique resembles the earth's natural ecosystem - living organisms work in conjunction with non-living components of their environment to create a self-assembling and self-maintaining system. Micro-BSCs can continuously generate electricity from microbial photosynthetic and respiratory activities over day-night cycles, offering a clean and renewable power source with self-sustaining potential. However, the promise of this technology has not been translated into practical applications because of its relatively low power (∼nW cm) and current short lifetimes (∼a couple of hours). In this work, we enabled high-performance, self-sustaining, long-life micro-BSCs by using fundamental breakthroughs of device architectures and electrode materials. A 3-D biocompatible, conductive, and porous anode demonstrated great microbial biofilm formation and a high rate of bacterial extracellular electron transfer, which led to greater power generation. Furthermore, our micro-BSCs promoted gas exchange to the bacteria through a gas-permeable PDMS membrane in a well-controlled, tightly enclosed micro-chamber, substantially enhancing sustainability. Through photosynthetic reactions of the cyanobacteria Synechocystis sp. PCC 6803 without additional organic fuel, the 90 μL single-chambered bio-solar cell generated a maximum power density of 43.8 μW cm and sustained consistent power production of ∼18.6 μW cm during the day and ∼11.4 μW cm at night for 20 days, which is the highest and longest reported success of any existing micro-scale bio-solar cells.
一种能够自给自足的微流控芯片系统对于独立、自主、自维持的即时诊断设备在资源有限和偏远地区的工作至关重要。微型生物太阳能电池(或微 BSCs)可以成为那些芯片实验室应用的最佳电源,因为这项技术类似于地球的自然生态系统——生物与环境中的非生物组件协同工作,创造出一个自组装和自维持的系统。微 BSCs 可以从微生物的光合作用和呼吸活动中持续产生电能,提供清洁和可再生的电源,具有自我维持的潜力。然而,由于其相对较低的功率(∼nW cm)和当前较短的寿命(∼几个小时),这项技术的前景尚未转化为实际应用。在这项工作中,我们通过使用设备架构和电极材料的重大突破,实现了高性能、自维持、长寿命的微 BSCs。一个 3D 生物相容性、导电和多孔的阳极极大地促进了微生物生物膜的形成和细菌细胞外电子转移的高速率,从而产生了更高的功率。此外,我们的微 BSCs 通过在一个可控、紧密封闭的微腔中的透气 PDMS 膜促进了气体与细菌的交换,极大地提高了可持续性。通过蓝藻 Synechocystis sp. PCC 6803 的光合作用,无需额外的有机燃料,90 μL 的单室生物太阳能电池产生了 43.8 μW cm 的最大功率密度,并在白天持续产生约 18.6 μW cm 的稳定功率,在晚上持续产生约 11.4 μW cm 的功率,持续 20 天,这是任何现有微尺度生物太阳能电池中最高和最长的成功记录。