Wang Yaxing, Duan Tao, Weng Zhehui, Ling Jie, Yin Xuemiao, Chen Lanhua, Sheng Daopeng, Diwu Juan, Chai Zhifang, Liu Ning, Wang Shuao
Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University , Chengdu 610064, China.
School for Radiological and Interdisciplinary Sciences and Collaborative Innovation Center of Radiation Medicine, Jiangsu Higher Education Institutions , Suzhou 215123, China.
Inorg Chem. 2017 Nov 6;56(21):13041-13050. doi: 10.1021/acs.inorgchem.7b01855. Epub 2017 Oct 9.
f-element-bearing iodate compounds are a large family mostly synthesized by hydrothermal reactions starting with actinide/lanthanide ions and iodic acid or iodate salt. In this work, we introduce melting periodic acid flux as a new reaction medium and provide a safe way for single-crystal growth of a series of new f-element iodate compounds including UO(IO)·HO (1), UO(IO)(HO)·HIO (2), α-Th(IO)(NO)(OH) (3), β-Th(IO)(NO)(OH) (4), and (HO)Nd(IO)·3HIO (5). The structures of these compounds deviate from those afforded from hydrothermal reactions. Specifically, compounds 1 and 2 exhibit pillared structures consisting of uranyl pentagonal bipyramids and iodate trigonal pyramids. Compounds 3 and 4 represent two new thorium iodate compounds that are constructed from subunits of thorium dimers. Compound 5 exhibits a flower-shaped trivalent lanthanide iodate structure with HIO molecules and HO cations filled in the channels. The aliovalent replacement of f elements in 5 is available from a hydrothermal process, further generating compounds of Th(IO)(HO) (6) and Ce(IO)(HO) (7). The distinct absorption features are observed in isotypic compounds 5-7, where 7 shows typical semiconductor behavior with a band gap of 2.43 eV. Remarkably, noncentrosymmetric 1, 6, and 7 exhibit strong second-harmonic-generation efficiencies of 1.3, 3.2, and 9.2 times, respectively, that of the commercial material KHPO. Additionally, the temperature-dependent emission spectra of 1 and 2 were also collected showing typical emission features of uranyl units and a negative correlation between the intensities of the emissions with temperature. Clearly, the presented low-temperature melting inorganic acid flux synthesis would provide a facile and effective strategy to produce a large new family of structurally versatile and multifunctional f-element inorganic compounds.
含f元素的碘酸盐化合物是一个大家族,大多通过以锕系/镧系离子与碘酸或碘酸盐为原料的水热反应合成。在本工作中,我们引入熔融高碘酸熔剂作为一种新的反应介质,并为一系列新型f元素碘酸盐化合物的单晶生长提供了一种安全方法,这些化合物包括UO(IO)·HO(1)、UO(IO)(HO)·HIO(2)、α-Th(IO)(NO)(OH)(3)、β-Th(IO)(NO)(OH)(4)和(HO)Nd(IO)·3HIO(5)。这些化合物的结构与水热反应得到的结构不同。具体而言,化合物1和2呈现出由铀酰五角双锥和碘酸三角锥组成的柱状结构。化合物3和4代表两种新的钍碘酸盐化合物,它们由钍二聚体亚基构建而成。化合物5呈现出一种花状三价镧系碘酸盐结构,通道中填充有HIO分子和HO阳离子。5中f元素的异价取代可通过水热过程实现,进一步生成Th(IO)(HO)(6)和Ce(IO)(HO)(7)化合物。在同型化合物5 - 7中观察到了明显的吸收特征,其中7表现出典型的半导体行为,带隙为2.43 eV。值得注意的是,非中心对称的1、6和7分别表现出比商用材料KHPO强1.3倍、3.2倍和9.2倍的强二次谐波产生效率。此外,还收集了1和2的温度依赖发射光谱,显示出铀酰单元的典型发射特征以及发射强度与温度之间的负相关。显然,所提出的低温熔融无机酸熔剂合成将为制备大量结构多样且多功能的f元素无机化合物新家族提供一种简便有效的策略。