Photovoltaic Laboratory, Korea Institute of Energy Research (KIER) , Daejeon 34129, Republic of Korea.
Photo-Electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST) , Seoul 02792, Republic of Korea.
ACS Appl Mater Interfaces. 2017 Oct 25;9(42):36865-36874. doi: 10.1021/acsami.7b11901. Epub 2017 Oct 16.
The electron transport layer (ETL) is a key component of perovskite solar cells (PSCs) and must provide efficient electron extraction and collection while minimizing the charge recombination at interfaces in order to ensure high performance. Conventional bilayered TiO ETLs fabricated by depositing compact TiO (c-TiO) and mesoporous TiO (mp-TiO) in sequence exhibit resistive losses due to the contact resistance at the c-TiO/mp-TiO interface and the series resistance arising from the intrinsically low conductivity of TiO. Herein, to minimize such resistive losses, we developed a novel ETL consisting of an ultrathin c-TiO layer hybridized with mp-TiO, which is fabricated by performing one-step spin-coating of a mp-TiO solution containing a small amount of titanium diisopropoxide bis(acetylacetonate) (TAA). By using electron microscopies and elemental mapping analysis, we establish that the optimal concentration of TAA produces an ultrathin blocking layer with a thickness of ∼3 nm and ensures that the mp-TiO layer has a suitable porosity for efficient perovskite infiltration. We compare PSCs based on mesoscopic ETLs with and without compact layers to determine the role of the hole-blocking layer in their performances. The hybrid ETLs exhibit enhanced electron extraction and reduced charge recombination, resulting in better photovoltaic performances and reduced hysteresis of PSCs compared to those with conventional bilayered ETLs.
电子传输层(ETL)是钙钛矿太阳能电池(PSCs)的关键组成部分,必须提供高效的电子提取和收集,同时最大限度地减少界面处的电荷复合,以确保高性能。传统的双层 TiO ETL 是通过顺序沉积致密 TiO(c-TiO)和介孔 TiO(mp-TiO)制备的,由于 c-TiO/mp-TiO 界面处的接触电阻和 TiO 本身低电导率引起的串联电阻,会导致电阻损耗。在此,为了最大限度地减少这种电阻损耗,我们开发了一种由超薄 c-TiO 层与 mp-TiO 杂交组成的新型 ETL,该 ETL 通过对含有少量钛二异丙氧基双(乙酰丙酮)(TAA)的 mp-TiO 溶液进行一步旋涂来制备。通过使用电子显微镜和元素映射分析,我们确定 TAA 的最佳浓度可产生厚度约为 3nm 的超薄阻挡层,并确保 mp-TiO 层具有合适的孔隙率,以实现高效的钙钛矿渗透。我们比较了具有和不具有致密层的介观 ETL 基 PSCs,以确定空穴阻挡层在其性能中的作用。与传统的双层 ETL 相比,混合 ETL 表现出增强的电子提取和减少的电荷复合,从而提高了 PSCs 的光伏性能并降低了滞后现象。