Ai Hiroyuki, Kai Kazuki, Kumaraswamy Ajayrama, Ikeno Hidetoshi, Wachtler Thomas
Department of Earth System Science, Fukuoka University, Fukuoka 814-0180, Japan,
Department of Earth System Science, Fukuoka University, Fukuoka 814-0180, Japan.
J Neurosci. 2017 Nov 1;37(44):10624-10635. doi: 10.1523/JNEUROSCI.0044-17.2017. Epub 2017 Oct 9.
Female honeybees use the "waggle dance" to communicate the location of nectar sources to their hive mates. Distance information is encoded in the duration of the waggle phase (von Frisch, 1967). During the waggle phase, the dancer produces trains of vibration pulses, which are detected by the follower bees via Johnston's organ located on the antennae. To uncover the neural mechanisms underlying the encoding of distance information in the waggle dance follower, we investigated morphology, physiology, and immunohistochemistry of interneurons arborizing in the primary auditory center of the honeybee (). We identified major interneuron types, named DL-Int-1, DL-Int-2, and bilateral DL-dSEG-LP, that responded with different spiking patterns to vibration pulses applied to the antennae. Experimental and computational analyses suggest that inhibitory connection plays a role in encoding and processing the duration of vibration pulse trains in the primary auditory center of the honeybee. The waggle dance represents a form of symbolic communication used by honeybees to convey the location of food sources via species-specific sound. The brain mechanisms used to decipher this symbolic information are unknown. We examined interneurons in the honeybee primary auditory center and identified different neuron types with specific properties. The results of our computational analyses suggest that inhibitory connection plays a role in encoding waggle dance signals. Our results are critical for understanding how the honeybee deciphers information from the sound produced by the waggle dance and provide new insights regarding how common neural mechanisms are used by different species to achieve communication.
雌性蜜蜂利用“摇摆舞”向蜂巢中的同伴传达花蜜来源的位置。距离信息编码在摇摆阶段的持续时间内(冯·弗里施,1967年)。在摇摆阶段,舞者会产生一连串的振动脉冲,跟随的蜜蜂通过位于触角上的约翰斯顿器官检测到这些脉冲。为了揭示摇摆舞跟随者中距离信息编码的神经机制,我们研究了在蜜蜂初级听觉中枢分支的中间神经元的形态、生理和免疫组织化学()。我们确定了主要的中间神经元类型,命名为DL-Int-1、DL-Int-2和双侧DL-dSEG-LP,它们对施加到触角上的振动脉冲有不同的放电模式。实验和计算分析表明,抑制性连接在蜜蜂初级听觉中枢对振动脉冲序列持续时间的编码和处理中起作用。摇摆舞是蜜蜂用来通过特定物种的声音传达食物来源位置的一种符号交流形式。用于解读这种符号信息的大脑机制尚不清楚。我们检查了蜜蜂初级听觉中枢的中间神经元,并确定了具有特定特性的不同神经元类型。我们的计算分析结果表明,抑制性连接在编码摇摆舞信号中起作用。我们的结果对于理解蜜蜂如何解读来自摇摆舞产生声音的信息至关重要,并为不同物种如何利用共同的神经机制进行交流提供了新的见解。