Suppr超能文献

X 射线和电镜下观察到的天然糖基化 HIV-1 包膜三聚体结构。

X-ray and EM structures of a natively glycosylated HIV-1 envelope trimer.

机构信息

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.

出版信息

Acta Crystallogr D Struct Biol. 2017 Oct 1;73(Pt 10):822-828. doi: 10.1107/S2059798317013353. Epub 2017 Sep 29.

Abstract

The structural and biochemical characterization of broadly neutralizing anti-HIV-1 antibodies (bNAbs) has been essential in guiding the design of potential vaccines to prevent infection by HIV-1. While these studies have revealed critical mechanisms by which bNAbs recognize and/or accommodate N-glycans on the trimeric envelope glycoprotein (Env), they have been limited to the visualization of high-mannose glycan forms only, since heterogeneity introduced from the presence of complex glycans makes it difficult to obtain high-resolution structures. 3.5 and 3.9 Å resolution crystal structures of the HIV-1 Env trimer with fully processed and native glycosylation were solved, revealing a glycan shield of high-mannose and complex-type N-glycans that were used to define the complete epitopes of two bNAbs. Here, the refinement of the N-glycans in the crystal structures is discussed and comparisons are made with glycan densities in glycosylated Env structures derived by single-particle cryo-electron microscopy.

摘要

广泛中和抗 HIV-1 抗体(bNAb)的结构和生化特性研究对于指导设计预防 HIV-1 感染的潜在疫苗至关重要。虽然这些研究揭示了 bNAb 识别和/或适应三聚体包膜糖蛋白(Env)上 N-聚糖的关键机制,但由于复杂聚糖的存在引入的异质性使得难以获得高分辨率结构,这些研究仅限于高甘露糖聚糖形式的可视化。解决了具有完全加工和天然糖基化的 HIV-1 Env 三聚体的 3.5 和 3.9 Å 分辨率晶体结构,揭示了高甘露糖和复杂型 N-聚糖的聚糖屏蔽,这些聚糖被用来定义两种 bNAb 的完整表位。在这里,讨论了晶体结构中 N-聚糖的精修,并与单颗粒冷冻电子显微镜衍生的糖基化 Env 结构中的聚糖密度进行了比较。

相似文献

1
X-ray and EM structures of a natively glycosylated HIV-1 envelope trimer.
Acta Crystallogr D Struct Biol. 2017 Oct 1;73(Pt 10):822-828. doi: 10.1107/S2059798317013353. Epub 2017 Sep 29.
2
Natively glycosylated HIV-1 Env structure reveals new mode for antibody recognition of the CD4-binding site.
Nat Struct Mol Biol. 2016 Oct;23(10):906-915. doi: 10.1038/nsmb.3291. Epub 2016 Sep 12.
3
Complete epitopes for vaccine design derived from a crystal structure of the broadly neutralizing antibodies PGT128 and 8ANC195 in complex with an HIV-1 Env trimer.
Acta Crystallogr D Biol Crystallogr. 2015 Oct;71(Pt 10):2099-108. doi: 10.1107/S1399004715013917. Epub 2015 Sep 26.
5
HIV-1 Glycan Density Drives the Persistence of the Mannose Patch within an Infected Individual.
J Virol. 2016 Nov 28;90(24):11132-11144. doi: 10.1128/JVI.01542-16. Print 2016 Dec 15.
7
Model Building and Refinement of a Natively Glycosylated HIV-1 Env Protein by High-Resolution Cryoelectron Microscopy.
Structure. 2015 Oct 6;23(10):1943-1951. doi: 10.1016/j.str.2015.07.020. Epub 2015 Sep 17.
9
Integrity of Glycosylation Processing of a Glycan-Depleted Trimeric HIV-1 Immunogen Targeting Key B-Cell Lineages.
J Proteome Res. 2018 Mar 2;17(3):987-999. doi: 10.1021/acs.jproteome.7b00639. Epub 2018 Feb 8.
10
Cell- and Protein-Directed Glycosylation of Native Cleaved HIV-1 Envelope.
J Virol. 2015 Sep;89(17):8932-44. doi: 10.1128/JVI.01190-15. Epub 2015 Jun 17.

引用本文的文献

1
Online carbohydrate 3D structure validation with the Privateer web app.
Acta Crystallogr F Struct Biol Commun. 2024 Feb 1;80(Pt 2):30-35. doi: 10.1107/S2053230X24000359. Epub 2024 Jan 24.
5
Leveraging glycomics data in glycoprotein 3D structure validation with Privateer.
Beilstein J Org Chem. 2020 Oct 9;16:2523-2533. doi: 10.3762/bjoc.16.204. eCollection 2020.
6
Structural Analysis of the Glycoprotein Complex Avidin by Tandem-Trapped Ion Mobility Spectrometry-Mass Spectrometry (Tandem-TIMS/MS).
Anal Chem. 2020 Mar 17;92(6):4459-4467. doi: 10.1021/acs.analchem.9b05481. Epub 2020 Feb 28.
7
Glycans in drug discovery.
Medchemcomm. 2019 Jul 26;10(10):1678-1691. doi: 10.1039/c9md00292h. eCollection 2019 Oct 1.
8
Automatically Fixing Errors in Glycoprotein Structures with Rosetta.
Structure. 2019 Jan 2;27(1):134-139.e3. doi: 10.1016/j.str.2018.09.006. Epub 2018 Oct 18.
9
Partially Open HIV-1 Envelope Structures Exhibit Conformational Changes Relevant for Coreceptor Binding and Fusion.
Cell Host Microbe. 2018 Oct 10;24(4):579-592.e4. doi: 10.1016/j.chom.2018.09.003.

本文引用的文献

1
2
Strategies for carbohydrate model building, refinement and validation.
Acta Crystallogr D Struct Biol. 2017 Feb 1;73(Pt 2):171-186. doi: 10.1107/S2059798316016910.
3
Cryo-EM structure of a CD4-bound open HIV-1 envelope trimer reveals structural rearrangements of the gp120 V1V2 loop.
Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):E7151-E7158. doi: 10.1073/pnas.1615939113. Epub 2016 Oct 31.
4
Natively glycosylated HIV-1 Env structure reveals new mode for antibody recognition of the CD4-binding site.
Nat Struct Mol Biol. 2016 Oct;23(10):906-915. doi: 10.1038/nsmb.3291. Epub 2016 Sep 12.
5
Trimeric HIV-1-Env Structures Define Glycan Shields from Clades A, B, and G.
Cell. 2016 May 5;165(4):813-26. doi: 10.1016/j.cell.2016.04.010. Epub 2016 Apr 21.
6
Composition and Antigenic Effects of Individual Glycan Sites of a Trimeric HIV-1 Envelope Glycoprotein.
Cell Rep. 2016 Mar 22;14(11):2695-706. doi: 10.1016/j.celrep.2016.02.058. Epub 2016 Mar 10.
7
Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer.
Science. 2016 Mar 4;351(6277):1043-8. doi: 10.1126/science.aad2450.
9
Privateer: software for the conformational validation of carbohydrate structures.
Nat Struct Mol Biol. 2015 Nov;22(11):833-4. doi: 10.1038/nsmb.3115.
10
Complete epitopes for vaccine design derived from a crystal structure of the broadly neutralizing antibodies PGT128 and 8ANC195 in complex with an HIV-1 Env trimer.
Acta Crystallogr D Biol Crystallogr. 2015 Oct;71(Pt 10):2099-108. doi: 10.1107/S1399004715013917. Epub 2015 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验