Fuel Cell Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea.
Nanoscale. 2017 Oct 26;9(41):15846-15855. doi: 10.1039/c7nr06646e.
Here we report the preparation of hollow microspheres with a thin shell composed of mixed cobalt nitride (Co-N) and cobalt oxide (Co-O) nanofragments encapsulated in thin layers of nitrogen-doped carbon (N-C) nanostructure (Co-N/Co-O@N-C) arrays with enhanced bifunctional oxygen electrochemical performance. The hybrid structures are synthesized via heat treatment of N-doped hollow carbon microspheres with cobalt nitrate, and both the specific ratio of these precursors and the selected annealing temperature are found to be the key factors for the formation of the unique hybrid structure. The as-obtained product (Co-N/Co-O@N-C) presents a large specific surface area (493 m g), high-level heteroatom doping (Co-N, Co-O, and N-C), and hierarchical porous nanoarchitecture containing macroporous frameworks and mesoporous walls. Electronic interaction between the thin N-C layers and the encapsulated Co-N and Co-O nanofragments efficiently optimizes oxygen adsorption properties on the Co-N/Co-O@N-C and thereby triggers bifunctional oxygen electrochemical activity at the surface. The Co-N/Co-O@N-C nanohybrid exhibited a high onset potential of 0.93 V, and a limiting current density of 5.6 mA cm indicating 4-electron oxygen reduction reaction (ORR), afforded high catalytic activity for the oxygen evolution reaction (OER) and even exceeded the catalytic stability of the commercial precious electrocatalysts; furthermore, when integrated into the oxygen electrode of a regenerative fuel cell device, it exhibited high-performance oxygen electrodes for both the ORR and the OER.
在这里,我们报告了一种空心微球的制备方法,该微球具有由混合的氮化钴(Co-N)和氧化钴(Co-O)纳米碎片组成的薄壳,这些纳米碎片被薄的氮掺杂碳(N-C)纳米结构(Co-N/Co-O@N-C)层包裹,具有增强的双功能氧电化学性能。该混合结构通过在氮掺杂空心碳微球上热处理硝酸钴合成,并且这些前体的特定比例和选择的退火温度被发现是形成独特混合结构的关键因素。所得产物(Co-N/Co-O@N-C)具有大的比表面积(493 m g)、高水平的杂原子掺杂(Co-N、Co-O 和 N-C)以及包含大孔框架和介孔壁的分级多孔纳米结构。薄的 N-C 层与包裹的 Co-N 和 Co-O 纳米碎片之间的电子相互作用有效地优化了 Co-N/Co-O@N-C 上的氧吸附特性,从而引发了表面的双功能氧电化学活性。Co-N/Co-O@N-C 纳米杂化物表现出 0.93 V 的高起始电位和 5.6 mA cm 的极限电流密度,表明 4 电子氧还原反应(ORR),对氧析出反应(OER)表现出高催化活性,甚至超过了商业贵金属电催化剂的催化稳定性;此外,当集成到再生燃料电池装置的氧电极中时,它表现出了对 ORR 和 OER 都具有高性能的氧电极。