Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, DK-2800, Kgs. Lyngby, Denmark.
Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, DK-2800, Kgs. Lyngby, Denmark.
Water Res. 2017 Dec 1;126:488-500. doi: 10.1016/j.watres.2017.09.033. Epub 2017 Sep 20.
The objective of this paper is to show the results of an industrial project dealing with modelling of anaerobic digesters. A multi-scale mathematical approach is developed to describe reactor hydrodynamics, granule growth/distribution and microbial competition/inhibition for substrate/space within the biofilm. The main biochemical and physico-chemical processes in the model are based on the Anaerobic Digestion Model No 1 (ADM1) extended with the fate of phosphorus (P), sulfur (S) and ethanol (Et-OH). Wastewater dynamic conditions are reproduced and data frequency increased using the Benchmark Simulation Model No 2 (BSM2) influent generator. All models are tested using two plant data sets corresponding to different operational periods (#D1, #D2). Simulation results reveal that the proposed approach can satisfactorily describe the transformation of organics, nutrients and minerals, the production of methane, carbon dioxide and sulfide and the potential formation of precipitates within the bulk (average deviation between computer simulations and measurements for both #D1, #D2 is around 10%). Model predictions suggest a stratified structure within the granule which is the result of: 1) applied loading rates, 2) mass transfer limitations and 3) specific (bacterial) affinity for substrate. Hence, inerts (X) and methanogens (X) are situated in the inner zone, and this fraction lowers as the radius increases favouring the presence of acidogens (X,X, X) and acetogens (X,X). Additional simulations show the effects on the overall process performance when operational (pH) and loading (S:COD) conditions are modified. Lastly, the effect of intra-granular precipitation on the overall organic/inorganic distribution is assessed at: 1) different times; and, 2) reactor heights. Finally, the possibilities and opportunities offered by the proposed approach for conducting engineering optimization projects are discussed.
本文旨在展示一个工业项目的成果,该项目涉及厌氧消化器的建模。开发了一种多尺度数学方法来描述反应器水力学、颗粒生长/分布以及生物膜内微生物对底物/空间的竞争/抑制。模型中的主要生化和物理化学过程基于扩展了磷(P)、硫(S)和乙醇(Et-OH)命运的厌氧消化模型 1(ADM1)。使用基准模拟模型 2(BSM2)的入口生成器再现废水动态条件并增加数据频率。使用两个对应于不同操作周期的工厂数据集(#D1、#D2)对所有模型进行测试。模拟结果表明,所提出的方法可以令人满意地描述有机物、营养物和矿物质的转化、甲烷、二氧化碳和硫化物的产生以及在主体内形成沉淀的潜力(两个数据集#D1、#D2 的计算机模拟与测量之间的平均偏差约为 10%)。模型预测表明颗粒内存在分层结构,这是以下因素的结果:1)应用的加载速率、2)传质限制和 3)对底物的特定(细菌)亲和力。因此,惰性物质(X)和产甲烷菌(X)位于内区,随着半径的增加,这部分物质降低,有利于产酸菌(X、X、X)和产乙酸菌(X、X)的存在。额外的模拟表明,当操作(pH)和加载(S:COD)条件发生变化时,对整个过程性能的影响。最后,评估了颗粒内沉淀对整体有机/无机分布的影响:1)在不同时间;和 2)在反应器高度上。最后,讨论了所提出的方法在进行工程优化项目时提供的可能性和机会。